Cold closed-die forging is a suitable process to produce spur-bevel gears due to its advantages, such as saving materials and time, reducing costs, increasing die life and improving the quality of the product. The hom...Cold closed-die forging is a suitable process to produce spur-bevel gears due to its advantages, such as saving materials and time, reducing costs, increasing die life and improving the quality of the product. The homogeneity of microstructure of cold closed-die forged gears can highly affect their service performance. The homogeneity of microstructure and Vickers hardness in cold closed-die forged gear of 20 Cr Mn Ti alloy is comprehensively studied by using optical microscopy and Vickers hardness tester. The results show that the distribution homogeneity of the aspect ratio of grain and Vickers hardness is the same. In the circumferential direction of the gear tooth, the distribution of the aspect ratio of grain and Vickers hardness is inhomogeneous and they gradually decrease from the surface to the center of the tooth. In the radial direction, the distribution of the aspect ratio of grain and Vickers hardness is inhomogeneous on the surface of the gear tooth; while it is relatively homogeneous in the center of the gear tooth. In the axial direction of the gear tooth, the distribution of the aspect ratio of grain and Vickers hardness is relatively homogeneous from the small-end to the large-end of the gear tooth.展开更多
The microstructures and Vickers hardness at room temperature of arc-meltingprocessed intermetallics of Mo_5Si_3-MoSi_2 hypoeutectic alloy and hypereutectic alloy annealed at1200℃ for different time were investigated....The microstructures and Vickers hardness at room temperature of arc-meltingprocessed intermetallics of Mo_5Si_3-MoSi_2 hypoeutectic alloy and hypereutectic alloy annealed at1200℃ for different time were investigated. Lamellar structure consisted of Mo_5Si_3 (D8m) phaseand MoSi_2 (C11_b) phase was observed in all the alloys. For Mo_5Si_3-MoSi_2 hypoeutectic alloy, thelamellar structure was found only after annealing and developed well with fine spacing on the orderof hundred nanometers after annealing at 1200℃ for 48 h. But when the annealing time was up to 96h, the well-developed lamellar structure was destroyed. For Mo_5Si_3-MoSi_2 hypereutectic alloy, thelamellar structure was found both before and after annealing. However the volume fraction andspacing of the lamellar structure did not change significantly before and after annealing. Theeffects of the formation, development and destruction of lamellar structure on Vickers hardness ofalloys were also investigated. When Mo_5Si_3-MoSi_2 hypoeutectic alloy annealed at 1200℃ for 48 h,the Vickers hardness was improved about 19% compared with that without annealing and formation oflamellar structure. The highest Vickers hardness of Mo5Si3-MoSi_2 hypereutectic was increasing about18% when annealing at 1200℃ for 48 h.展开更多
The hardening on surface of complex profles such as thread and spline manufactured by cold rolling can efectively improve the mechanical properties and surface quality of rolled parts. The distribution of hardness in ...The hardening on surface of complex profles such as thread and spline manufactured by cold rolling can efectively improve the mechanical properties and surface quality of rolled parts. The distribution of hardness in superfcial layer is closely related to the deformation by rolling. To establish the suitable correlation model for describing the relationship between strain and hardness during cold rolling forming process of complex profles is helpful to the optimization of rolling parameters and improvement of rolling process. In this study, a physical analog experiment refecting the uneven deformation during complex-profle rolling process has been extracted and designed, and then the large date set (more than 400 data points) of training samples refecting the local deformation characteristics of complexprofle rolling have been obtained. Several types of polynomials and power functions were adopted in regression analysis, and the regression correlation models of 45# steel were evaluated by the single-pass and multi-pass physical analog experiments and the complex-profle rolling experiment. The results indicated that the predicting accuracy of polynomial regression model is better in the strain range (i.e., ε < 1.2) of training samples, and the correlation relationship between strain and hardness out strain range (i.e., ε > 1.2) of training samples can be well described by power regression model;so the correlation relationship between strain and hardness during complex-profle rolling process of 45# steel can be characterized by a segmented function such as third-order polynomial in the range ε < 1.2 and power function with a ftting constant in the range ε > 1.2;and the predicting error of the regression model by segmented function is less than 10%.展开更多
The Vickers hardness test has been widely used for neutron-irradiated materials and nanoindentation for ion-irradiated materials.Comparing the Vickers hardness and nanohardness of the same materials quantitatively and...The Vickers hardness test has been widely used for neutron-irradiated materials and nanoindentation for ion-irradiated materials.Comparing the Vickers hardness and nanohardness of the same materials quantitatively and establishing a correlation between them is meaningful.In this study,five representative materials—pure titanium(Ti),nickel(Ni),tungsten(W),304 coarse-grained stainless steel(CG-SS)and 304 nanocrystalline austenitic stainless steel(NG-SS)—are investigated for comparison.The results show that the relationship between Vickers hardness and nanohardness does not conform to a mathematical geometric relationship because of sink-in and pile-up effects confirmed by finite element analysis(FEA)and the results of optical microscopy.Finally,one new method was developed by excluding the effects of sink-in and pile-up in materials.With this improved correction in the projected area of the Vickers hardness and nanohardness,the two kinds of hardness become identical.展开更多
基金Project(51105287)supported by the National Natural Science Foundation of ChinaProject(2013M531750)supported by China Postdoctoral Science Foundation
文摘Cold closed-die forging is a suitable process to produce spur-bevel gears due to its advantages, such as saving materials and time, reducing costs, increasing die life and improving the quality of the product. The homogeneity of microstructure of cold closed-die forged gears can highly affect their service performance. The homogeneity of microstructure and Vickers hardness in cold closed-die forged gear of 20 Cr Mn Ti alloy is comprehensively studied by using optical microscopy and Vickers hardness tester. The results show that the distribution homogeneity of the aspect ratio of grain and Vickers hardness is the same. In the circumferential direction of the gear tooth, the distribution of the aspect ratio of grain and Vickers hardness is inhomogeneous and they gradually decrease from the surface to the center of the tooth. In the radial direction, the distribution of the aspect ratio of grain and Vickers hardness is inhomogeneous on the surface of the gear tooth; while it is relatively homogeneous in the center of the gear tooth. In the axial direction of the gear tooth, the distribution of the aspect ratio of grain and Vickers hardness is relatively homogeneous from the small-end to the large-end of the gear tooth.
文摘The microstructures and Vickers hardness at room temperature of arc-meltingprocessed intermetallics of Mo_5Si_3-MoSi_2 hypoeutectic alloy and hypereutectic alloy annealed at1200℃ for different time were investigated. Lamellar structure consisted of Mo_5Si_3 (D8m) phaseand MoSi_2 (C11_b) phase was observed in all the alloys. For Mo_5Si_3-MoSi_2 hypoeutectic alloy, thelamellar structure was found only after annealing and developed well with fine spacing on the orderof hundred nanometers after annealing at 1200℃ for 48 h. But when the annealing time was up to 96h, the well-developed lamellar structure was destroyed. For Mo_5Si_3-MoSi_2 hypereutectic alloy, thelamellar structure was found both before and after annealing. However the volume fraction andspacing of the lamellar structure did not change significantly before and after annealing. Theeffects of the formation, development and destruction of lamellar structure on Vickers hardness ofalloys were also investigated. When Mo_5Si_3-MoSi_2 hypoeutectic alloy annealed at 1200℃ for 48 h,the Vickers hardness was improved about 19% compared with that without annealing and formation oflamellar structure. The highest Vickers hardness of Mo5Si3-MoSi_2 hypereutectic was increasing about18% when annealing at 1200℃ for 48 h.
基金Supported by National Natural Science Foundation of China(Grant No.51675415)Key Research and Development Program of Shaanxi,China(Grant No.2021GXLH-Z-049).
文摘The hardening on surface of complex profles such as thread and spline manufactured by cold rolling can efectively improve the mechanical properties and surface quality of rolled parts. The distribution of hardness in superfcial layer is closely related to the deformation by rolling. To establish the suitable correlation model for describing the relationship between strain and hardness during cold rolling forming process of complex profles is helpful to the optimization of rolling parameters and improvement of rolling process. In this study, a physical analog experiment refecting the uneven deformation during complex-profle rolling process has been extracted and designed, and then the large date set (more than 400 data points) of training samples refecting the local deformation characteristics of complexprofle rolling have been obtained. Several types of polynomials and power functions were adopted in regression analysis, and the regression correlation models of 45# steel were evaluated by the single-pass and multi-pass physical analog experiments and the complex-profle rolling experiment. The results indicated that the predicting accuracy of polynomial regression model is better in the strain range (i.e., ε < 1.2) of training samples, and the correlation relationship between strain and hardness out strain range (i.e., ε > 1.2) of training samples can be well described by power regression model;so the correlation relationship between strain and hardness during complex-profle rolling process of 45# steel can be characterized by a segmented function such as third-order polynomial in the range ε < 1.2 and power function with a ftting constant in the range ε > 1.2;and the predicting error of the regression model by segmented function is less than 10%.
基金financially supported by the National Magnetic Confinement Fusion Energy Research Project of China(No.2015GB113000)National Natural Science Foundation of China(Nos.11675005,11935004)+1 种基金China Postdoctoral Science Foundation(No.2018M641093)the National Defense Nuclear Material Technology Innovation Center。
文摘The Vickers hardness test has been widely used for neutron-irradiated materials and nanoindentation for ion-irradiated materials.Comparing the Vickers hardness and nanohardness of the same materials quantitatively and establishing a correlation between them is meaningful.In this study,five representative materials—pure titanium(Ti),nickel(Ni),tungsten(W),304 coarse-grained stainless steel(CG-SS)and 304 nanocrystalline austenitic stainless steel(NG-SS)—are investigated for comparison.The results show that the relationship between Vickers hardness and nanohardness does not conform to a mathematical geometric relationship because of sink-in and pile-up effects confirmed by finite element analysis(FEA)and the results of optical microscopy.Finally,one new method was developed by excluding the effects of sink-in and pile-up in materials.With this improved correction in the projected area of the Vickers hardness and nanohardness,the two kinds of hardness become identical.