In the frame of compressed sensing distributed video coding, the design of the quantization matrix directly affects the reconstruction quality of the receiving terminal of the video. In this article, we present a new ...In the frame of compressed sensing distributed video coding, the design of the quantization matrix directly affects the reconstruction quality of the receiving terminal of the video. In this article, we present a new design method of the Gaussian quantization matrix adapting to the compressed sensing coding, for that the distribution of the parameters of the image is featured of the characteristic of approximately normal distribution after measured by compressive sensing. By this way, the parameters of a certain quantity of the image frames depending on the video sequences generated by the Gaussian quantization matrix possess certain adaptive capacity. By comparison with the plan of the traditional quantization, the quantization matrix presented in this article would improve the reconstruction quality of the video.展开更多
In this paper,a video compressed sensing reconstruction algorithm based on multidimensional reference frames is proposed using the sparse characteristics of video signals in different sparse representation domains.Fir...In this paper,a video compressed sensing reconstruction algorithm based on multidimensional reference frames is proposed using the sparse characteristics of video signals in different sparse representation domains.First,the overall structure of the proposed video compressed sensing algorithm is introduced in this paper.The paper adopts a multi-reference frame bidirectional prediction hypothesis optimization algorithm.Then,the paper proposes a reconstruction method for CS frames at the re-decoding end.In addition to using key frames of each GOP reconstructed in the time domain as reference frames for reconstructing CS frames,half-pixel reference frames and scaled reference frames in the pixel domain are also used as CS frames.Reference frames of CS frames are used to obtain higher quality assumptions.Themethod of obtaining reference frames in the pixel domain is also discussed in detail in this paper.Finally,the reconstruction algorithm proposed in this paper is compared with video compression algorithms in the literature that have better reconstruction results.Experiments show that the algorithm has better performance than the best multi-reference frame video compression sensing algorithm and can effectively improve the quality of slowmotion video reconstruction.展开更多
现有的分块视频压缩感知在获取边信息时,通常对所有图像块均采用固定权值边信息合成方法,该方法忽略了不同图像块之间相关度不同的问题。针对这一问题,根据贝叶斯压缩感知和运动估计理论,提出了一种基于块的分类加权边信息生成方案的分...现有的分块视频压缩感知在获取边信息时,通常对所有图像块均采用固定权值边信息合成方法,该方法忽略了不同图像块之间相关度不同的问题。针对这一问题,根据贝叶斯压缩感知和运动估计理论,提出了一种基于块的分类加权边信息生成方案的分布式视频解码方法。在解码端利用相邻关键帧中不同块的相关度差异,对相邻关键帧进行基于块的分类加权运动估计,生成边信息,进而完成非关键帧的重构。考虑到加权系数的大小取决于相邻关键帧对应块的相关度,所采用的重建算法是基于TSW-CS模型的贝叶斯压缩感知重构算法。分别采用固定权值边信息生成方法和分类加权边信息生成方法对不同视频序列进行了实验对比,实验结果表明,采用分类加权边信息方法生成的视频重建PSNR值比固定权值边信息生成方法平均提高了0.2~0.5 d B,所采用的解码方法可有效地提高视频压缩感知重构质量。展开更多
Although compressive measurements save data storage and bandwidth usage, they are difficult to be used directly for target tracking and classification without pixel reconstruction. This is because the Gaussian random ...Although compressive measurements save data storage and bandwidth usage, they are difficult to be used directly for target tracking and classification without pixel reconstruction. This is because the Gaussian random matrix destroys the target location information in the original video frames. This paper summarizes our research effort on target tracking and classification directly in the compressive measurement domain. We focus on one particular type of compressive measurement using pixel subsampling. That is, original pixels in video frames are randomly subsampled. Even in such a special compressive sensing setting, conventional trackers do not work in a satisfactory manner. We propose a deep learning approach that integrates YOLO (You Only Look Once) and ResNet (residual network) for multiple target tracking and classification. YOLO is used for multiple target tracking and ResNet is for target classification. Extensive experiments using short wave infrared (SWIR), mid-wave infrared (MWIR), and long-wave infrared (LWIR) videos demonstrated the efficacy of the proposed approach even though the training data are very scarce.展开更多
现有优秀的基于深度学习的分布式视频压缩感知(Distributed Compressed Video Sensing,DCVS)重构算法利用测量值和参考帧顺序更新非关键帧,获得了较好的重构性能,但由于缺乏较严格的理论指导,无法充分结合这两类信息,限制了非关键帧重...现有优秀的基于深度学习的分布式视频压缩感知(Distributed Compressed Video Sensing,DCVS)重构算法利用测量值和参考帧顺序更新非关键帧,获得了较好的重构性能,但由于缺乏较严格的理论指导,无法充分结合这两类信息,限制了非关键帧重构质量的进一步提升.针对该问题,本文首先利用贝叶斯理论及最大后验概率(Maximum A Posteriori,MAP)估计推导出DCVS中非关键帧重构的优化方程,再基于近端梯度算法推导出优化方程的求解框架,包含多信息流梯度更新聚合方程.基于此,本文设计了多信息流梯度更新及聚合模块(Multi-Information flow Gradient update and Aggregation,MIGA),并构建了深度多信息流梯度更新与聚合网络(Deep Multi-Information flow Gradient update and Aggregation Network,DMIGAN)用于DCVS非关键帧重构.MIGA利用测量值与多参考帧对当前非关键帧进行并行梯度更新,再做信息交互融合,从而充分结合多种信息流更新重构帧.本文级联MIGA与去噪子网络用于模拟近端梯度算法的单次迭代,作为基础模块(phase),并通过级联多个phase构造深度重构网络DMIGAN,实现帧重构的深度优化过程.实验表明,DMIGAN与具代表性的传统迭代优化算法结构相似的帧间组稀疏表示重构算法(Structural SIMilarity based Inter-Frame Group Sparse Representation,SSIM-Inter F-GSR)相比,在低采样率与高采样率下性能分别提升了8.8 dB和7.36 dB;和具有代表性的深度学习重构算法VCSNet-2相比,在低采样率和高采样率下性能分别提升了7.09 dB和8.78 dB.展开更多
在2003年制定的H.264/AVC视频编码标准获得巨大的成功后,新一代视频编码国际标准HEVC(High Ef-ficiency Video Coding)在ITU-T的VCEG和ISO/IEC的MPEG通力合作下已经开发成功。HEVC提供了多项先进的视频编码技术。尽管HEVC的视频编码层...在2003年制定的H.264/AVC视频编码标准获得巨大的成功后,新一代视频编码国际标准HEVC(High Ef-ficiency Video Coding)在ITU-T的VCEG和ISO/IEC的MPEG通力合作下已经开发成功。HEVC提供了多项先进的视频编码技术。尽管HEVC的视频编码层结构仍然是常见的基于块运动补偿的混合视频编码模式,但是和先前的标准相比具有多处重要改进。文中对HEVC标准的技术的主要特点和性能进行了综述。展开更多
分布式视频压缩感知(Distributed Compressed Video Sensing,DCVS)多假设重构算法将传统视频编码中的多假设预测运动估计思想引入到分布式压缩感知视频编码系统中,改善了对视频序列的重构质量。在该算法中,大变化块采用本帧邻域块信息...分布式视频压缩感知(Distributed Compressed Video Sensing,DCVS)多假设重构算法将传统视频编码中的多假设预测运动估计思想引入到分布式压缩感知视频编码系统中,改善了对视频序列的重构质量。在该算法中,大变化块采用本帧邻域块信息作为参考,而当本帧邻域块含有较多纹理和细节时,算法性能有待提高。为此,对非局部相似性的思想进行改进,提出基于加权非局部相似性的分布式视频压缩感知多假设重构算法。在该算法中,对大变化块中的纹理块采用加权非局部相似性在相邻已重构帧中寻找自相似块,最终生成辅助重构信息块;对于非纹理块,则简单利用加权非局部相似性生成相似块。对不同特点的视频序列的仿真实验结果表明,改进后的算法有效改善了视频序列的重构质量,具有较优的重构SSIM,PSNR指标,其中PSNR约提高1dB。展开更多
文摘In the frame of compressed sensing distributed video coding, the design of the quantization matrix directly affects the reconstruction quality of the receiving terminal of the video. In this article, we present a new design method of the Gaussian quantization matrix adapting to the compressed sensing coding, for that the distribution of the parameters of the image is featured of the characteristic of approximately normal distribution after measured by compressive sensing. By this way, the parameters of a certain quantity of the image frames depending on the video sequences generated by the Gaussian quantization matrix possess certain adaptive capacity. By comparison with the plan of the traditional quantization, the quantization matrix presented in this article would improve the reconstruction quality of the video.
文摘In this paper,a video compressed sensing reconstruction algorithm based on multidimensional reference frames is proposed using the sparse characteristics of video signals in different sparse representation domains.First,the overall structure of the proposed video compressed sensing algorithm is introduced in this paper.The paper adopts a multi-reference frame bidirectional prediction hypothesis optimization algorithm.Then,the paper proposes a reconstruction method for CS frames at the re-decoding end.In addition to using key frames of each GOP reconstructed in the time domain as reference frames for reconstructing CS frames,half-pixel reference frames and scaled reference frames in the pixel domain are also used as CS frames.Reference frames of CS frames are used to obtain higher quality assumptions.Themethod of obtaining reference frames in the pixel domain is also discussed in detail in this paper.Finally,the reconstruction algorithm proposed in this paper is compared with video compression algorithms in the literature that have better reconstruction results.Experiments show that the algorithm has better performance than the best multi-reference frame video compression sensing algorithm and can effectively improve the quality of slowmotion video reconstruction.
基金Supported by National Natural Science Foundation of China(61170147) Major Cooperation Project of Production and College in Fujian Province(2012H61010016) Natural Science Foundation of Fujian Province(2013J01234)
文摘现有的分块视频压缩感知在获取边信息时,通常对所有图像块均采用固定权值边信息合成方法,该方法忽略了不同图像块之间相关度不同的问题。针对这一问题,根据贝叶斯压缩感知和运动估计理论,提出了一种基于块的分类加权边信息生成方案的分布式视频解码方法。在解码端利用相邻关键帧中不同块的相关度差异,对相邻关键帧进行基于块的分类加权运动估计,生成边信息,进而完成非关键帧的重构。考虑到加权系数的大小取决于相邻关键帧对应块的相关度,所采用的重建算法是基于TSW-CS模型的贝叶斯压缩感知重构算法。分别采用固定权值边信息生成方法和分类加权边信息生成方法对不同视频序列进行了实验对比,实验结果表明,采用分类加权边信息方法生成的视频重建PSNR值比固定权值边信息生成方法平均提高了0.2~0.5 d B,所采用的解码方法可有效地提高视频压缩感知重构质量。
文摘Although compressive measurements save data storage and bandwidth usage, they are difficult to be used directly for target tracking and classification without pixel reconstruction. This is because the Gaussian random matrix destroys the target location information in the original video frames. This paper summarizes our research effort on target tracking and classification directly in the compressive measurement domain. We focus on one particular type of compressive measurement using pixel subsampling. That is, original pixels in video frames are randomly subsampled. Even in such a special compressive sensing setting, conventional trackers do not work in a satisfactory manner. We propose a deep learning approach that integrates YOLO (You Only Look Once) and ResNet (residual network) for multiple target tracking and classification. YOLO is used for multiple target tracking and ResNet is for target classification. Extensive experiments using short wave infrared (SWIR), mid-wave infrared (MWIR), and long-wave infrared (LWIR) videos demonstrated the efficacy of the proposed approach even though the training data are very scarce.
文摘现有优秀的基于深度学习的分布式视频压缩感知(Distributed Compressed Video Sensing,DCVS)重构算法利用测量值和参考帧顺序更新非关键帧,获得了较好的重构性能,但由于缺乏较严格的理论指导,无法充分结合这两类信息,限制了非关键帧重构质量的进一步提升.针对该问题,本文首先利用贝叶斯理论及最大后验概率(Maximum A Posteriori,MAP)估计推导出DCVS中非关键帧重构的优化方程,再基于近端梯度算法推导出优化方程的求解框架,包含多信息流梯度更新聚合方程.基于此,本文设计了多信息流梯度更新及聚合模块(Multi-Information flow Gradient update and Aggregation,MIGA),并构建了深度多信息流梯度更新与聚合网络(Deep Multi-Information flow Gradient update and Aggregation Network,DMIGAN)用于DCVS非关键帧重构.MIGA利用测量值与多参考帧对当前非关键帧进行并行梯度更新,再做信息交互融合,从而充分结合多种信息流更新重构帧.本文级联MIGA与去噪子网络用于模拟近端梯度算法的单次迭代,作为基础模块(phase),并通过级联多个phase构造深度重构网络DMIGAN,实现帧重构的深度优化过程.实验表明,DMIGAN与具代表性的传统迭代优化算法结构相似的帧间组稀疏表示重构算法(Structural SIMilarity based Inter-Frame Group Sparse Representation,SSIM-Inter F-GSR)相比,在低采样率与高采样率下性能分别提升了8.8 dB和7.36 dB;和具有代表性的深度学习重构算法VCSNet-2相比,在低采样率和高采样率下性能分别提升了7.09 dB和8.78 dB.
文摘在2003年制定的H.264/AVC视频编码标准获得巨大的成功后,新一代视频编码国际标准HEVC(High Ef-ficiency Video Coding)在ITU-T的VCEG和ISO/IEC的MPEG通力合作下已经开发成功。HEVC提供了多项先进的视频编码技术。尽管HEVC的视频编码层结构仍然是常见的基于块运动补偿的混合视频编码模式,但是和先前的标准相比具有多处重要改进。文中对HEVC标准的技术的主要特点和性能进行了综述。
文摘分布式视频压缩感知(Distributed Compressed Video Sensing,DCVS)多假设重构算法将传统视频编码中的多假设预测运动估计思想引入到分布式压缩感知视频编码系统中,改善了对视频序列的重构质量。在该算法中,大变化块采用本帧邻域块信息作为参考,而当本帧邻域块含有较多纹理和细节时,算法性能有待提高。为此,对非局部相似性的思想进行改进,提出基于加权非局部相似性的分布式视频压缩感知多假设重构算法。在该算法中,对大变化块中的纹理块采用加权非局部相似性在相邻已重构帧中寻找自相似块,最终生成辅助重构信息块;对于非纹理块,则简单利用加权非局部相似性生成相似块。对不同特点的视频序列的仿真实验结果表明,改进后的算法有效改善了视频序列的重构质量,具有较优的重构SSIM,PSNR指标,其中PSNR约提高1dB。