In the frame of compressed sensing distributed video coding, the design of the quantization matrix directly affects the reconstruction quality of the receiving terminal of the video. In this article, we present a new ...In the frame of compressed sensing distributed video coding, the design of the quantization matrix directly affects the reconstruction quality of the receiving terminal of the video. In this article, we present a new design method of the Gaussian quantization matrix adapting to the compressed sensing coding, for that the distribution of the parameters of the image is featured of the characteristic of approximately normal distribution after measured by compressive sensing. By this way, the parameters of a certain quantity of the image frames depending on the video sequences generated by the Gaussian quantization matrix possess certain adaptive capacity. By comparison with the plan of the traditional quantization, the quantization matrix presented in this article would improve the reconstruction quality of the video.展开更多
We propose a Rate-Distortion (RD) optimized strategy for frame-dropping and scheduling of multi-user conversa- tional and streaming videos. We consider a scenario where conversational and streaming videos share the fo...We propose a Rate-Distortion (RD) optimized strategy for frame-dropping and scheduling of multi-user conversa- tional and streaming videos. We consider a scenario where conversational and streaming videos share the forwarding resources at a network node. Two buffers are setup on the node to temporarily store the packets for these two types of video applications. For streaming video, a big buffer is used as the associated delay constraint of the application is moderate and a very small buffer is used for conversational video to ensure that the forwarding delay of every packet is limited. A scheduler is located behind these two buffers that dynamically assigns transmission slots on the outgoing link to the two buffers. Rate-distortion side information is used to perform RD-optimized frame dropping in case of node overload. Sharing the data rate on the outgoing link between the con- versational and the streaming videos is done either based on the fullness of the two associated buffers or on the mean incoming rates of the respective videos. Simulation results showed that our proposed RD-optimized frame dropping and scheduling ap- proach provides significant improvements in performance over the popular priority-based random dropping (PRD) technique.展开更多
Peer-to-peer (P2P) networking is a distributed architecture that partitions tasks or data between peer nodes. In this paper, an efficient Hypercube Sequential Matrix Partition (HS-MP) for efficient data sharing in P2P...Peer-to-peer (P2P) networking is a distributed architecture that partitions tasks or data between peer nodes. In this paper, an efficient Hypercube Sequential Matrix Partition (HS-MP) for efficient data sharing in P2P Networks using tokenizer method is proposed to resolve the problems of the larger P2P networks. The availability of data is first measured by the tokenizer using Dynamic Hypercube Organization. By applying Dynamic Hypercube Organization, that efficiently coordinates and assists the peers in P2P network ensuring data availability at many locations. Each data in peer is then assigned with valid ID by the tokenizer using Sequential Self-Organizing (SSO) ID generation model. This ensures data sharing with other nodes in large P2P network at minimum time interval which is obtained through proximity of data availability. To validate the framework HS-MP, the performance is evaluated using traffic traces collected from data sharing applications. Simulations conducting using Network simulator-2 show that the proposed framework outperforms the conventional streaming models. The performance of the proposed system is analyzed using energy consumption, average latency and average data availability rate with respect to the number of peer nodes, data size, amount of data shared and execution time. The proposed method reduces the energy consumption 43.35% to transpose traffic, 35.29% to bitrev traffic and 25% to bitcomp traffic patterns.展开更多
文摘In the frame of compressed sensing distributed video coding, the design of the quantization matrix directly affects the reconstruction quality of the receiving terminal of the video. In this article, we present a new design method of the Gaussian quantization matrix adapting to the compressed sensing coding, for that the distribution of the parameters of the image is featured of the characteristic of approximately normal distribution after measured by compressive sensing. By this way, the parameters of a certain quantity of the image frames depending on the video sequences generated by the Gaussian quantization matrix possess certain adaptive capacity. By comparison with the plan of the traditional quantization, the quantization matrix presented in this article would improve the reconstruction quality of the video.
基金Project (No. STE1093/1-1) supported by the German ResearchFoundation, Germany
文摘We propose a Rate-Distortion (RD) optimized strategy for frame-dropping and scheduling of multi-user conversa- tional and streaming videos. We consider a scenario where conversational and streaming videos share the forwarding resources at a network node. Two buffers are setup on the node to temporarily store the packets for these two types of video applications. For streaming video, a big buffer is used as the associated delay constraint of the application is moderate and a very small buffer is used for conversational video to ensure that the forwarding delay of every packet is limited. A scheduler is located behind these two buffers that dynamically assigns transmission slots on the outgoing link to the two buffers. Rate-distortion side information is used to perform RD-optimized frame dropping in case of node overload. Sharing the data rate on the outgoing link between the con- versational and the streaming videos is done either based on the fullness of the two associated buffers or on the mean incoming rates of the respective videos. Simulation results showed that our proposed RD-optimized frame dropping and scheduling ap- proach provides significant improvements in performance over the popular priority-based random dropping (PRD) technique.
文摘Peer-to-peer (P2P) networking is a distributed architecture that partitions tasks or data between peer nodes. In this paper, an efficient Hypercube Sequential Matrix Partition (HS-MP) for efficient data sharing in P2P Networks using tokenizer method is proposed to resolve the problems of the larger P2P networks. The availability of data is first measured by the tokenizer using Dynamic Hypercube Organization. By applying Dynamic Hypercube Organization, that efficiently coordinates and assists the peers in P2P network ensuring data availability at many locations. Each data in peer is then assigned with valid ID by the tokenizer using Sequential Self-Organizing (SSO) ID generation model. This ensures data sharing with other nodes in large P2P network at minimum time interval which is obtained through proximity of data availability. To validate the framework HS-MP, the performance is evaluated using traffic traces collected from data sharing applications. Simulations conducting using Network simulator-2 show that the proposed framework outperforms the conventional streaming models. The performance of the proposed system is analyzed using energy consumption, average latency and average data availability rate with respect to the number of peer nodes, data size, amount of data shared and execution time. The proposed method reduces the energy consumption 43.35% to transpose traffic, 35.29% to bitrev traffic and 25% to bitcomp traffic patterns.