期刊文献+
共找到1,104篇文章
< 1 2 56 >
每页显示 20 50 100
SwinVid:Enhancing Video Object Detection Using Swin Transformer
1
作者 Abdelrahman Maharek Amr Abozeid +1 位作者 Rasha Orban Kamal ElDahshan 《Computer Systems Science & Engineering》 2024年第2期305-320,共16页
What causes object detection in video to be less accurate than it is in still images?Because some video frames have degraded in appearance from fast movement,out-of-focus camera shots,and changes in posture.These reas... What causes object detection in video to be less accurate than it is in still images?Because some video frames have degraded in appearance from fast movement,out-of-focus camera shots,and changes in posture.These reasons have made video object detection(VID)a growing area of research in recent years.Video object detection can be used for various healthcare applications,such as detecting and tracking tumors in medical imaging,monitoring the movement of patients in hospitals and long-term care facilities,and analyzing videos of surgeries to improve technique and training.Additionally,it can be used in telemedicine to help diagnose and monitor patients remotely.Existing VID techniques are based on recurrent neural networks or optical flow for feature aggregation to produce reliable features which can be used for detection.Some of those methods aggregate features on the full-sequence level or from nearby frames.To create feature maps,existing VID techniques frequently use Convolutional Neural Networks(CNNs)as the backbone network.On the other hand,Vision Transformers have outperformed CNNs in various vision tasks,including object detection in still images and image classification.We propose in this research to use Swin-Transformer,a state-of-the-art Vision Transformer,as an alternative to CNN-based backbone networks for object detection in videos.The proposed architecture enhances the accuracy of existing VID methods.The ImageNet VID and EPIC KITCHENS datasets are used to evaluate the suggested methodology.We have demonstrated that our proposed method is efficient by achieving 84.3%mean average precision(mAP)on ImageNet VID using less memory in comparison to other leading VID techniques.The source code is available on the website https://github.com/amaharek/SwinVid. 展开更多
关键词 video object detection vision transformers convolutional neural networks deep learning
下载PDF
Motion connectivity-based initial video object extraction
2
作者 王煜坚 吴镇扬 《Journal of Southeast University(English Edition)》 EI CAS 2007年第4期500-506,共7页
In order to obtain the initial video objects from the video sequences, an improved initial video object extraction algorithm based on motion connectivity is proposed. Moving objects in video sequences are highly conne... In order to obtain the initial video objects from the video sequences, an improved initial video object extraction algorithm based on motion connectivity is proposed. Moving objects in video sequences are highly connected and structured, which makes motion connectivity an advanced feature for segmentation. Accordingly, after sharp noise elimination, the cumulated difference image, which exhibits the coherent motion of the moving object, is adaptively thresholded. Then the maximal connected region is labeled, post-processed and output as the final segmenting mask. Hence the initial video object is effectively extracted. Comparative experimental results show that the proposed algorithm extracts the initial video object automatically, promptly and properly, thereby achieving satisfactory subjective and objective performance. 展开更多
关键词 video object extraction motion connectivity adaptive threshold cumulated difference image
下载PDF
Scribble-Supervised Video Object Segmentation 被引量:3
3
作者 Peiliang Huang Junwei Han +2 位作者 Nian Liu Jun Ren Dingwen Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第2期339-353,共15页
Recently,video object segmentation has received great attention in the computer vision community.Most of the existing methods heavily rely on the pixel-wise human annotations,which are expensive and time-consuming to ... Recently,video object segmentation has received great attention in the computer vision community.Most of the existing methods heavily rely on the pixel-wise human annotations,which are expensive and time-consuming to obtain.To tackle this problem,we make an early attempt to achieve video object segmentation with scribble-level supervision,which can alleviate large amounts of human labor for collecting the manual annotation.However,using conventional network architectures and learning objective functions under this scenario cannot work well as the supervision information is highly sparse and incomplete.To address this issue,this paper introduces two novel elements to learn the video object segmentation model.The first one is the scribble attention module,which captures more accurate context information and learns an effective attention map to enhance the contrast between foreground and background.The other one is the scribble-supervised loss,which can optimize the unlabeled pixels and dynamically correct inaccurate segmented areas during the training stage.To evaluate the proposed method,we implement experiments on two video object segmentation benchmark datasets,You Tube-video object segmentation(VOS),and densely annotated video segmentation(DAVIS)-2017.We first generate the scribble annotations from the original per-pixel annotations.Then,we train our model and compare its test performance with the baseline models and other existing works.Extensive experiments demonstrate that the proposed method can work effectively and approach to the methods requiring the dense per-pixel annotations. 展开更多
关键词 Convolutional neural networks(CNNs) SCRIBBLE self-attention video object segmentation weakly supervised
下载PDF
Initial Object Segmentation for Video Object Plane Generation Using Cellular Neural Networks
4
作者 王慧 杨高波 张兆扬 《Journal of Shanghai University(English Edition)》 CAS 2003年第2期168-172,共5页
MPEG 4 is a basic tool for interactivity and manipulation of video sequences. Video object segmentation is a key issue in defining the content of any video sequence, which is often divided into two steps: initial obj... MPEG 4 is a basic tool for interactivity and manipulation of video sequences. Video object segmentation is a key issue in defining the content of any video sequence, which is often divided into two steps: initial object segmentation and object tracking. In this paper, an initial object segmentation method for video object plane(VOP) generation using color information is proposed. Based on 3 by 3 linear templates, a cellular neural network (CNN) is used to implemented object segmentation. The Experimental results are presented to verify the efficiency and robustness of this approach. 展开更多
关键词 video object plane(VOP) cellular neural networks(CNN) templates.
下载PDF
AUTOMATIC SEGMENTATION OF VIDEO OBJECT PLANES IN MPEG-4 BASED ON SPATIO-TEMPORAL INFORMATION
5
作者 XiaJinxiang HuangShunji 《Journal of Electronics(China)》 2004年第3期206-212,共7页
Segmentation of semantic Video Object Planes (VOP's) from video sequence is a key to the standard MPEG-4 with content-based video coding. In this paper, the approach of automatic Segmentation of VOP's Based on... Segmentation of semantic Video Object Planes (VOP's) from video sequence is a key to the standard MPEG-4 with content-based video coding. In this paper, the approach of automatic Segmentation of VOP's Based on Spatio-Temporal Information (SBSTI) is proposed.The proceeding results demonstrate the good performance of the algorithm. 展开更多
关键词 video sequence segmentation video object Plane (VOP) Based on spatiotemporal information MPEG-4
下载PDF
VIDEO OBJECT SEGMENTATION BY 2-D MESH-BASED MOTION ANALYSIS
6
作者 Wang Yujian Gao Jianpo Yang Hao Wu Zhenyang 《Journal of Electronics(China)》 2007年第5期668-673,共6页
Video object extraction is a key technology in content-based video coding.A novel video object extracting algorithm by two Dimensional (2-D) mesh-based motion analysis is proposed in this paper.Firstly,a 2-D mesh fitt... Video object extraction is a key technology in content-based video coding.A novel video object extracting algorithm by two Dimensional (2-D) mesh-based motion analysis is proposed in this paper.Firstly,a 2-D mesh fitting the original frame image is obtained via feature detection algorithm. Then,higher order statistics motion analysis is applied on the 2-D mesh representation to get an initial motion detection mask.After post-processing,the final segmenting mask is quickly obtained.And hence the video object is effectively extracted.Experimental results show that the proposed algorithm combines the merits of mesh-based segmenting algorithms and pixel-based segmenting algorithms,and hereby achieves satisfactory subjective and objective performance while dramatically increasing the segmenting speed. 展开更多
关键词 video object extraction 2-D mesh Higher order statistics
下载PDF
Rebound of Region of Interest (RROI), a New Kernel-Based Algorithm for Video Object Tracking Applications
7
作者 Andres Alarcon Ramirez Mohamed Chouikha 《Journal of Signal and Information Processing》 2014年第4期97-103,共7页
This paper presents a new kernel-based algorithm for video object tracking called rebound of region of interest (RROI). The novel algorithm uses a rectangle-shaped section as region of interest (ROI) to represent and ... This paper presents a new kernel-based algorithm for video object tracking called rebound of region of interest (RROI). The novel algorithm uses a rectangle-shaped section as region of interest (ROI) to represent and track specific objects in videos. The proposed algorithm is constituted by two stages. The first stage seeks to determine the direction of the object’s motion by analyzing the changing regions around the object being tracked between two consecutive frames. Once the direction of the object’s motion has been predicted, it is initialized an iterative process that seeks to minimize a function of dissimilarity in order to find the location of the object being tracked in the next frame. The main advantage of the proposed algorithm is that, unlike existing kernel-based methods, it is immune to highly cluttered conditions. The results obtained by the proposed algorithm show that the tracking process was successfully carried out for a set of color videos with different challenging conditions such as occlusion, illumination changes, cluttered conditions, and object scale changes. 展开更多
关键词 video object Tracking Cluttered Conditions Kernel-Based Algorithm
下载PDF
Temporal Shape Error Concealment for Video Objects
8
作者 于烨 谢旭东 +2 位作者 陆建华 郑君里 陈长文 《Journal of Beijing Institute of Technology》 EI CAS 2008年第3期322-329,共8页
A novel temporal shape error concealment technique is proposed, which can he used in the context of object-based video coding schemes. In order to reduce the effect of the shape variations of a video object, the curva... A novel temporal shape error concealment technique is proposed, which can he used in the context of object-based video coding schemes. In order to reduce the effect of the shape variations of a video object, the curvature scale space (CSS) technique is adopted to extract features, and then these features are used for boundary matching between the current frame and the previous frame. Because the temporal, spatial and sta- tistical video contour information are all considered, the proposed method can find the optimal matching, which is used to replace the damaged contours. The simulation results show that the proposed algorithm achieves better subjective, objective qualities and higher efficiency than those previously developed methods. 展开更多
关键词 error concealment object-based image and video processing curvature scale space (CSS) shapedata
下载PDF
Evaluating quality of motion for unsupervised video object segmentation
9
作者 CHENG Guanjun SONG Huihui 《Optoelectronics Letters》 EI 2024年第6期379-384,共6页
Current mainstream unsupervised video object segmentation(UVOS) approaches typically incorporate optical flow as motion information to locate the primary objects in coherent video frames. However, they fuse appearance... Current mainstream unsupervised video object segmentation(UVOS) approaches typically incorporate optical flow as motion information to locate the primary objects in coherent video frames. However, they fuse appearance and motion information without evaluating the quality of the optical flow. When poor-quality optical flow is used for the interaction with the appearance information, it introduces significant noise and leads to a decline in overall performance. To alleviate this issue, we first employ a quality evaluation module(QEM) to evaluate the optical flow. Then, we select high-quality optical flow as motion cues to fuse with the appearance information, which can prevent poor-quality optical flow from diverting the network's attention. Moreover, we design an appearance-guided fusion module(AGFM) to better integrate appearance and motion information. Extensive experiments on several widely utilized datasets, including DAVIS-16, FBMS-59, and You Tube-Objects, demonstrate that the proposed method outperforms existing methods. 展开更多
关键词 Evaluating quality of motion for unsupervised video object segmentation
原文传递
Multi-Stream Temporally Enhanced Network for Video Salient Object Detection
10
作者 Dan Xu Jiale Ru Jinlong Shi 《Computers, Materials & Continua》 SCIE EI 2024年第1期85-104,共20页
Video salient object detection(VSOD)aims at locating the most attractive objects in a video by exploring the spatial and temporal features.VSOD poses a challenging task in computer vision,as it involves processing com... Video salient object detection(VSOD)aims at locating the most attractive objects in a video by exploring the spatial and temporal features.VSOD poses a challenging task in computer vision,as it involves processing complex spatial data that is also influenced by temporal dynamics.Despite the progress made in existing VSOD models,they still struggle in scenes of great background diversity within and between frames.Additionally,they encounter difficulties related to accumulated noise and high time consumption during the extraction of temporal features over a long-term duration.We propose a multi-stream temporal enhanced network(MSTENet)to address these problems.It investigates saliency cues collaboration in the spatial domain with a multi-stream structure to deal with the great background diversity challenge.A straightforward,yet efficient approach for temporal feature extraction is developed to avoid the accumulative noises and reduce time consumption.The distinction between MSTENet and other VSOD methods stems from its incorporation of both foreground supervision and background supervision,facilitating enhanced extraction of collaborative saliency cues.Another notable differentiation is the innovative integration of spatial and temporal features,wherein the temporal module is integrated into the multi-stream structure,enabling comprehensive spatial-temporal interactions within an end-to-end framework.Extensive experimental results demonstrate that the proposed method achieves state-of-the-art performance on five benchmark datasets while maintaining a real-time speed of 27 fps(Titan XP).Our code and models are available at https://github.com/RuJiaLe/MSTENet. 展开更多
关键词 video salient object detection deep learning temporally enhanced foreground-background collaboration
下载PDF
E-GrabCut: an economic method of iterative video object extraction 被引量:1
11
作者 Le DONG Ning FENG +2 位作者 Mengdie MAO Ling HE Jingjing WANG 《Frontiers of Computer Science》 SCIE EI CSCD 2017年第4期649-660,共12页
Efficient, interactive foreground/background seg- mentation in video is of great practical importance in video editing. This paper proposes an interactive and unsupervised video object segmentation algorithm named E-G... Efficient, interactive foreground/background seg- mentation in video is of great practical importance in video editing. This paper proposes an interactive and unsupervised video object segmentation algorithm named E-GrabCut con- centrating on achieving both of the segmentation quality and time efficiency as highly demanded in the related filed. There are three features in the proposed algorithms. Firstly, we have developed a powerful, non-iterative version of the optimiza- tion process for each frame. Secondly, more user interaction in the first frame is used to improve the Gaussian Mixture Model (GMM). Thirdly, a robust algorithm for the follow- ing frame segmentation has been developed by reusing the previous GMM. Extensive experiments demonstrate that our method outperforms the state-of-the-art video segmentation algorithm in terms of integration of time efficiency and seg- mentation quality. 展开更多
关键词 interactive video object extraction video seg-mentation GRABCUT GMM
原文传递
Objective Performance Evaluation of Video Segmentation Algorithms with Ground-Truth 被引量:1
12
作者 杨高波 张兆扬 《Journal of Shanghai University(English Edition)》 CAS 2004年第1期70-74,共5页
While the development of particular video segmentation algorithms has attracted considerable research interest, relatively little effort has been devoted to provide a methodology for evaluating their performance. In t... While the development of particular video segmentation algorithms has attracted considerable research interest, relatively little effort has been devoted to provide a methodology for evaluating their performance. In this paper, we propose a methodology to objectively evaluate video segmentation algorithm with ground-truth, which is based on computing the deviation of segmentation results from the reference segmentation. Four different metrics based on classification pixels, edges, relative foreground area and relative position respectively are combined to address the spatial accuracy. Temporal coherency is evaluated by utilizing the difference of spatial accuracy between successive frames. The experimental results show the feasibility of our approach. Moreover, it is computationally more efficient than previous methods. It can be applied to provide an offline ranking among different segmentation algorithms and to optimally set the parameters for a given algorithm. 展开更多
关键词 video object segmentation performance evaluation MPEG-4.
下载PDF
Full-duplex strategy for video object segmentation 被引量:1
13
作者 Ge-Peng Ji Deng-Ping Fan +3 位作者 Keren Fu Zhe Wu Jianbing Shen Ling Shao 《Computational Visual Media》 SCIE EI CSCD 2023年第1期155-175,共21页
Previous video object segmentation approachesmainly focus on simplex solutions linking appearance and motion,limiting effective feature collaboration between these two cues.In this work,we study a novel and efficient ... Previous video object segmentation approachesmainly focus on simplex solutions linking appearance and motion,limiting effective feature collaboration between these two cues.In this work,we study a novel and efficient full-duplex strategy network(FSNet)to address this issue,by considering a better mutual restraint scheme linking motion and appearance allowing exploitation of cross-modal features from the fusion and decoding stage.Specifically,we introduce a relational cross-attention module(RCAM)to achieve bidirectional message propagation across embedding sub-spaces.To improve the model’s robustness and update inconsistent features from the spatiotemporal embeddings,we adopt a bidirectional purification module after the RCAM.Extensive experiments on five popular benchmarks show that our FSNet is robust to various challenging scenarios(e.g.,motion blur and occlusion),and compares well to leading methods both for video object segmentation and video salient object detection.The project is publicly available at https://github.com/GewelsJI/FSNet. 展开更多
关键词 video object segmentation(VOS) video salient object detection(V-SOD) visual attention
原文传递
Global video object segmentation with spatial constraint module
14
作者 Yadang Chen Duolin Wang +2 位作者 Zhiguo Chen Zhi-Xin Yang Enhua Wu 《Computational Visual Media》 SCIE EI CSCD 2023年第2期385-400,共16页
We present a lightweight and efficient semisupervised video object segmentation network based on the space-time memory framework.To some extent,our method solves the two difficulties encountered in traditional video o... We present a lightweight and efficient semisupervised video object segmentation network based on the space-time memory framework.To some extent,our method solves the two difficulties encountered in traditional video object segmentation:one is that the single frame calculation time is too long,and the other is that the current frame’s segmentation should use more information from past frames.The algorithm uses a global context(GC)module to achieve highperformance,real-time segmentation.The GC module can effectively integrate multi-frame image information without increased memory and can process each frame in real time.Moreover,the prediction mask of the previous frame is helpful for the segmentation of the current frame,so we input it into a spatial constraint module(SCM),which constrains the areas of segments in the current frame.The SCM effectively alleviates mismatching of similar targets yet consumes few additional resources.We added a refinement module to the decoder to improve boundary segmentation.Our model achieves state-of-the-art results on various datasets,scoring 80.1%on YouTube-VOS 2018 and a J&F score of 78.0%on DAVIS 2017,while taking 0.05 s per frame on the DAVIS 2016 validation dataset. 展开更多
关键词 video object segmentation semantic segmentation global context(GC)module spatial constraint
原文传递
Research on video motion object segmentation for content-based application
15
作者 包红强 ZHANG Zhao- yang +4 位作者 YU Song-yu WANG Suo-zhong WANG Nu-li FANG Yong WANG Zhi-gang 《Journal of Shanghai University(English Edition)》 CAS 2006年第2期142-143,共2页
With the development of the modern information society, more and more multimedia information is available. So the technology of multimedia processing is becoming the important task for the irrelevant area of scientist... With the development of the modern information society, more and more multimedia information is available. So the technology of multimedia processing is becoming the important task for the irrelevant area of scientist. Among of the multimedia, the visual informarion is more attractive due to its direct, vivid characteristic, but at the same rime the huge amount of video data causes many challenges if the video storage, processing and transmission. 展开更多
关键词 image processing video object segmentation spatiotemporal framework MPEG-4.
下载PDF
Real-time moving object detection for video monitoring systems 被引量:18
16
作者 Wei Zhiqiang Ji Xiaopeng Wang Peng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第4期731-736,共6页
Moving object detection is one of the challenging problems in video monitoring systems, especially when the illumination changes and shadow exists. Amethod for real-time moving object detection is described. Anew back... Moving object detection is one of the challenging problems in video monitoring systems, especially when the illumination changes and shadow exists. Amethod for real-time moving object detection is described. Anew background model is proposed to handle the illumination varition problem. With optical flow technology and background subtraction, a moving object is extracted quickly and accurately. An effective shadow elimination algorithm based on color features is used to refine the moving obj ects. Experimental results demonstrate that the proposed method can update the background exactly and quickly along with the varition of illumination, and the shadow can be eliminated effectively. The proposed algorithm is a real-time one which the foundation for further object recognition and understanding of video mum'toting systems. 展开更多
关键词 video monitoring system moving object detection background subtraction background model shadow elimination.
下载PDF
Algorithm Research on Moving Object Detection of Surveillance Video Sequence 被引量:2
17
作者 Kuihe Yang Zhiming Cai Lingling Zhao 《Optics and Photonics Journal》 2013年第2期308-312,共5页
In video surveillance, there are many interference factors such as target changes, complex scenes, and target deformation in the moving object tracking. In order to resolve this issue, based on the comparative analysi... In video surveillance, there are many interference factors such as target changes, complex scenes, and target deformation in the moving object tracking. In order to resolve this issue, based on the comparative analysis of several common moving object detection methods, a moving object detection and recognition algorithm combined frame difference with background subtraction is presented in this paper. In the algorithm, we first calculate the average of the values of the gray of the continuous multi-frame image in the dynamic image, and then get background image obtained by the statistical average of the continuous image sequence, that is, the continuous interception of the N-frame images are summed, and find the average. In this case, weight of object information has been increasing, and also restrains the static background. Eventually the motion detection image contains both the target contour and more target information of the target contour point from the background image, so as to achieve separating the moving target from the image. The simulation results show the effectiveness of the proposed algorithm. 展开更多
关键词 video SURVEILLANCE MOVING object Detection FRAME DIFFERENCE BACKGROUND SUBTRACTION
下载PDF
Detection of Objects in Motion—A Survey of Video Surveillance
18
作者 Jamal Raiyn 《Advances in Internet of Things》 2013年第4期73-78,共6页
Video surveillance system is the most important issue in homeland security field. It is used as a security system because of its ability to track and to detect a particular person. To overcome the lack of the conventi... Video surveillance system is the most important issue in homeland security field. It is used as a security system because of its ability to track and to detect a particular person. To overcome the lack of the conventional video surveillance system that is based on human perception, we introduce a novel cognitive video surveillance system (CVS) that is based on mobile agents. CVS offers important attributes such as suspect objects detection and smart camera cooperation for people tracking. According to many studies, an agent-based approach is appropriate for distributed systems, since mobile agents can transfer copies of themselves to other servers in the system. 展开更多
关键词 video SURVEILLANCE object DETECTION Image Analysis
下载PDF
Real-time detection of moving objects in video sequences
19
作者 宋红 石峰 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第3期687-691,共5页
An approach to detection of moving objects in video sequences, with application to video surveillance is presented. The algorithm combines two kinds of change points, which are detected from the region-based frame dif... An approach to detection of moving objects in video sequences, with application to video surveillance is presented. The algorithm combines two kinds of change points, which are detected from the region-based frame difference and adjusted background subtraction. An adaptive threshold technique is employed to automatically choose the threshold value to segment the moving objects from the still background. And experiment results show that the algorithm is effective and efficient in practical situations. Furthermore, the algorithm is robust to the effects of the changing of lighting condition and can be applied for video surveillance system. 展开更多
关键词 object detection video surveillance region-based frame difference adjusted background subtraction.
下载PDF
Open-Access Framework for Efficient Object-Oriented Development of Video Analysis Software
20
作者 Dimitris K. Iakovidis Dimitris Diamantis 《Journal of Software Engineering and Applications》 2014年第8期730-743,共14页
The increasing use of digital video everyday in a multitude of electronic devices, including mobile phones, tablets and laptops, poses the need for quick development of cross-platform video software. However current a... The increasing use of digital video everyday in a multitude of electronic devices, including mobile phones, tablets and laptops, poses the need for quick development of cross-platform video software. However current approaches to this direction usually require a long learning curve, and their development lacks standardization. This results in software components that are difficult to reuse, and hard to maintain or extend. In order to overcome such issues, we propose a novel object-oriented framework for efficient development of software systems for video analysis. It consists of a set of four abstract components, suitable for the implementation of independent plug-in modules for video acquisition, preprocessing, analysis and output handling. The extensibility of each module can be facilitated by sub-modules specifying additional functionalities. This architecture enables quick responses to changes and re-configurability;thus conforming to the requirements of agile software development practices. Considering the need for platform independency, the proposed Java Video Analysis (JVA) framework is implemented in Java. It is publicly available through the web as open-access software, supported by a growing collection of implemented modules. Its efficiency is empirically validated for the development of a representative video analysis system. 展开更多
关键词 object-ORIENTED FRAMEWORK EFFICIENT SOFTWARE Development video Analysis Java
下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部