Recently,satellite imagery has been widely applied in many areas.However,due to the limitations of hardware equipment and transmission bandwidth,the images received on the ground have low resolution and weak texture.I...Recently,satellite imagery has been widely applied in many areas.However,due to the limitations of hardware equipment and transmission bandwidth,the images received on the ground have low resolution and weak texture.In addition,since ground terminals have various resolutions and real-time playing requirements,it is essential to achieve arbitrary scale super-resolution(SR)of satellite images.In this paper,we propose an arbitrary scale SR network for satellite image reconstruction.First,we propose an arbitrary upscale module for satellite imagery that can map low-resolution satellite image features to arbitrary scale enlarged SR outputs.Second,we design an edge reinforcement module to enhance the highfrequency details in satellite images through a twobranch network.Finally,extensive upsample experiments on WHU-RS19 and NWPU-RESISC45 datasets and subsequent image segmentation experiments both show the superiority of our method over the counterparts.展开更多
The Burst Time Plan(BTP) generation is the key for resource allocation in Broadband Satellite Multimedia(BSM) system.The main purpose of this paper is to minimize the system response time to users' request caused ...The Burst Time Plan(BTP) generation is the key for resource allocation in Broadband Satellite Multimedia(BSM) system.The main purpose of this paper is to minimize the system response time to users' request caused by BTP generation as well as maintain the Quality of Service(QoS) and improve the channel utilization efficiency.Traditionally the BTP is generated periodically in order to simplify the implementation of the resource allocation algorithm.Based on the analysis we find that Periodical BTP Generation(P-BTPG) method cannot guarantee the delay performance,channel utilization efficiency and QoS simultaneously,especially when the capacity requests arrived randomly.The Optimized BTP Generation(O-BTPG) method is given based on the optimal scheduling period and scheduling latency without considering the signaling overhead.Finally,a novel Asynchronous BTP Generation(A-BTPG) method is proposed which is invoked according to users' requests.A BSM system application scenario is simulated.Simulation results show that A-BTPG is a trade-off between the performance and signaling overhead which can improve the system performance insensitive to the traffic pattern.This method can be used in the ATM onboard switching satellite system and further more can be expended to Digital Video Broadcasting-Return Channel Satellite(DVB-RCS) system or IP onboard routing BSM system in the future.展开更多
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant 91738302,Grant 62102423,Grant 61671332,and Grant U1736206in part by the Open Research Fund of State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University under Grant 17E03.
文摘Recently,satellite imagery has been widely applied in many areas.However,due to the limitations of hardware equipment and transmission bandwidth,the images received on the ground have low resolution and weak texture.In addition,since ground terminals have various resolutions and real-time playing requirements,it is essential to achieve arbitrary scale super-resolution(SR)of satellite images.In this paper,we propose an arbitrary scale SR network for satellite image reconstruction.First,we propose an arbitrary upscale module for satellite imagery that can map low-resolution satellite image features to arbitrary scale enlarged SR outputs.Second,we design an edge reinforcement module to enhance the highfrequency details in satellite images through a twobranch network.Finally,extensive upsample experiments on WHU-RS19 and NWPU-RESISC45 datasets and subsequent image segmentation experiments both show the superiority of our method over the counterparts.
基金Supported by the National Natural Science Foundation ofChina (No. 60972061,60972062,and 61032004)the Na-tional High Technology Research and Development Program of China ("863" Program) (No. 2008AA12A204,2008AA12Z307)+1 种基金Natural Science Foundation of Jiangsu Province (BK2009060)the"Triple Three" High Level Talent Development Plan of Jiangsu Province
文摘The Burst Time Plan(BTP) generation is the key for resource allocation in Broadband Satellite Multimedia(BSM) system.The main purpose of this paper is to minimize the system response time to users' request caused by BTP generation as well as maintain the Quality of Service(QoS) and improve the channel utilization efficiency.Traditionally the BTP is generated periodically in order to simplify the implementation of the resource allocation algorithm.Based on the analysis we find that Periodical BTP Generation(P-BTPG) method cannot guarantee the delay performance,channel utilization efficiency and QoS simultaneously,especially when the capacity requests arrived randomly.The Optimized BTP Generation(O-BTPG) method is given based on the optimal scheduling period and scheduling latency without considering the signaling overhead.Finally,a novel Asynchronous BTP Generation(A-BTPG) method is proposed which is invoked according to users' requests.A BSM system application scenario is simulated.Simulation results show that A-BTPG is a trade-off between the performance and signaling overhead which can improve the system performance insensitive to the traffic pattern.This method can be used in the ATM onboard switching satellite system and further more can be expended to Digital Video Broadcasting-Return Channel Satellite(DVB-RCS) system or IP onboard routing BSM system in the future.