This paper focuses on the mechanism underlying the overall delay of a real-time video communication system from the time of capture at the encoder to the time of display at the decoder. A detailed analysis is presente...This paper focuses on the mechanism underlying the overall delay of a real-time video communication system from the time of capture at the encoder to the time of display at the decoder. A detailed analysis is presented to illustrate the delay problem. We then describe a statistically uniform intra-block refresh scheme for very low delay video communication. By scattering intra-blocks uniformly into continuous frames, the overall delay is significantly decreased, and object changes in the scene could be presented to the end user instantly. For comparison, the overall delay and the peak signal-to-noise ratio (PSNR) performance are tested. The experiment results show that an average of approximately 0.1 dB PSNR gain on average is obtained relative to random intra-macroblock refresh algorithm in H.264 JM, and the end-to-end delay performance is significantly improved.展开更多
基金Project partially supported by the Fundamental Research Funds for the Central Universitiesthe 111 Project Program for Changjiang Scholars and Innovative Research Team in University (No. B08038),China
文摘This paper focuses on the mechanism underlying the overall delay of a real-time video communication system from the time of capture at the encoder to the time of display at the decoder. A detailed analysis is presented to illustrate the delay problem. We then describe a statistically uniform intra-block refresh scheme for very low delay video communication. By scattering intra-blocks uniformly into continuous frames, the overall delay is significantly decreased, and object changes in the scene could be presented to the end user instantly. For comparison, the overall delay and the peak signal-to-noise ratio (PSNR) performance are tested. The experiment results show that an average of approximately 0.1 dB PSNR gain on average is obtained relative to random intra-macroblock refresh algorithm in H.264 JM, and the end-to-end delay performance is significantly improved.