Semantic video analysis plays an important role in the field of machine intelligence and pattern recognition. In this paper, based on the Hidden Markov Model (HMM), a semantic recognition framework on compressed video...Semantic video analysis plays an important role in the field of machine intelligence and pattern recognition. In this paper, based on the Hidden Markov Model (HMM), a semantic recognition framework on compressed videos is proposed to analyze the video events according to six low-level features. After the detailed analysis of video events, the pattern of global motion and five features in foreground—the principal parts of videos, are employed as the observations of the Hidden Markov Model to classify events in videos. The applications of the proposed framework in some video event detections demonstrate the promising success of the proposed framework on semantic video analysis.展开更多
Focusing on the problem of goal event detection in soccer videos,a novel method based on Hidden Markov Model(HMM) and the semantic rule is proposed.Firstly,a HMM for a goal event is constructed.Then a Normalized Seman...Focusing on the problem of goal event detection in soccer videos,a novel method based on Hidden Markov Model(HMM) and the semantic rule is proposed.Firstly,a HMM for a goal event is constructed.Then a Normalized Semantic Weighted Sum(NSWS) rule is established by defining a new feature of shots,semantic observation weight.The test video is detected based on the HMM and the NSWS rule,respectively.Finally,a fusion scheme based on logic distance is proposed and the detection results of the HMM and the NSWS rule are fused by optimal weights in the decision level,obtaining the final result.Experimental results indicate that the proposed method achieves 96.43% precision and 100% recall,which shows the effectiveness of this letter.展开更多
基金Supported in part by the National Natural Science Foundation of China (No. 60572045)the Ministry of Education of China Ph.D. Program Foundation (No.20050698033)Cooperation Project (2005.7-2007.6) with Microsoft Research Asia.
文摘Semantic video analysis plays an important role in the field of machine intelligence and pattern recognition. In this paper, based on the Hidden Markov Model (HMM), a semantic recognition framework on compressed videos is proposed to analyze the video events according to six low-level features. After the detailed analysis of video events, the pattern of global motion and five features in foreground—the principal parts of videos, are employed as the observations of the Hidden Markov Model to classify events in videos. The applications of the proposed framework in some video event detections demonstrate the promising success of the proposed framework on semantic video analysis.
基金Supported by the National Natural Science Foundation of China (No. 61072110)the Industrial Tackling Project of Shaanxi Province (2010K06-20)the Natural Science Foundation of Shaanxi Province (SJ08F15)
文摘Focusing on the problem of goal event detection in soccer videos,a novel method based on Hidden Markov Model(HMM) and the semantic rule is proposed.Firstly,a HMM for a goal event is constructed.Then a Normalized Semantic Weighted Sum(NSWS) rule is established by defining a new feature of shots,semantic observation weight.The test video is detected based on the HMM and the NSWS rule,respectively.Finally,a fusion scheme based on logic distance is proposed and the detection results of the HMM and the NSWS rule are fused by optimal weights in the decision level,obtaining the final result.Experimental results indicate that the proposed method achieves 96.43% precision and 100% recall,which shows the effectiveness of this letter.