We report the observation of asymmetric switching dual peaks in ferroelectric copolymer films. These dual peaks occurs when the poling electric field is just below the coercive field and can be removed by continuous a...We report the observation of asymmetric switching dual peaks in ferroelectric copolymer films. These dual peaks occurs when the poling electric field is just below the coercive field and can be removed by continuous application of high enough switching voltage. Our experimental observations can be explained by the injection and the redistribution of space charges in ferroelectric films.展开更多
Ionic liquid(IL),1-butyl-3-methylimidazolium hexafluorophosphate([BMIM]PF6)as a new and environmentally friendly diluent was introduced to prepare poly(vinylidene fluoride)(PVDF)membranes via thermally induced phase s...Ionic liquid(IL),1-butyl-3-methylimidazolium hexafluorophosphate([BMIM]PF6)as a new and environmentally friendly diluent was introduced to prepare poly(vinylidene fluoride)(PVDF)membranes via thermally induced phase separation(TIPS).Phase diagram of PVDF/[BMIM]PF6 was measured.The effects of polymer concentration and quenching temperature on the morphologies,properties,and performances of the PVDF membranes were investigated.When the polymer concentration was 15 wt%,the pure water flux of the fabricated membrane was up to nearly 2000 L·m-2·h-1,along with adequate mechanical strength.With the increasing of PVDF concentration and quenching temperature,mean pore size and water permeability of the membrane decreased.SEM results showed that PVDF membranes manufactured by ionic liquid(BMIm PF6)presented spherulite structure.And the PVDF membranes were represented asβphase by XRD and FTIR characterization.It provides a new way to prepare PVDF membranes with piezoelectric properties.展开更多
Poly(vinylidene fluoride)(PVDF)/multi-walled carbon nanotube(MWCNT) nanocomposites were prepared by means of ultrasonic dispersion method. X-ray diffraction(XRD) results indicate that incorporating MWCNTs into...Poly(vinylidene fluoride)(PVDF)/multi-walled carbon nanotube(MWCNT) nanocomposites were prepared by means of ultrasonic dispersion method. X-ray diffraction(XRD) results indicate that incorporating MWCNTs into PVDF caused the formation of β phase. A thermal annealing at 130 ℃ confirmed that the β phase was stable in the nanocomposites. Differential scanning calorimetry(DSC) results indicate that the melting temperature slightly increased while the heat of fusion markedly decreased with increasing MWCNT content. The tensile strength and modulus of PVDF were improved by loading the MWCNTs. The scanning electron microscopy(SEM) observations showed that MWCNTs were uniformly dispersed in the PVDF matrix and an interfacial adhesion between MWCNT and PVDF was achieved, which was responsible for the enhancement in the tensile strength and modulus of PVDE.展开更多
The crystalline structures, morphologies, and mechanical properties of poly(vinylidene fluoride)/clay nanocomposites were studied using X-ray diffraction(XRD), transmission electron microscopy(TEM), Fourier tran...The crystalline structures, morphologies, and mechanical properties of poly(vinylidene fluoride)/clay nanocomposites were studied using X-ray diffraction(XRD), transmission electron microscopy(TEM), Fourier transform infrared spectroscopy(FTIR), polarized optical microscopy(POM), and tensile tests. The results of XRD and TEM show that organoclays are dispersed in the poly(vinylidene fluoride)(PVDF) matrix. A clay-induced crystal transformation from α-phase to β-phase of PVFD was confirmed by XRD and FTIR. Clay layers restricted the growth of spherulite. The tensile tests indicate that the tensile modulus and yield strength as well as the elongation at break decrease when clay is loaded.展开更多
Perovskite solar cells(PSCs)have become the promising next-generation photovoltaic devices due to their excellent photoelectric performances,and the power conversion efficiencies(PCEs)have experienced unprecedented ra...Perovskite solar cells(PSCs)have become the promising next-generation photovoltaic devices due to their excellent photoelectric performances,and the power conversion efficiencies(PCEs)have experienced unprecedented rapid increase in recent years.However,to realize the practical application of PSCs,high performance and long-term stability are required and the preparation of high-quality perovskite film is the key.Herein,we adopt a simple and effective method to prepare high-quality perovskite films by introducing the poly(vinylidene fluoride)(PVDF)polymer additive with abundant hydrophobic F.As the growth template,the PVDF promotes the growth of perovskite crystal,improves the crystallinity and film morphology,thus reducing defect density and inhibiting carrier recombination.The results show that the photovoltaic performances of the perovskite device with PVDF are meaningfully improved,and a high PCE of 21.42%is achieved with an improvement of 10.87%,More importantly,the PVDF-based perovskites display greatly enhanced humidity and heat stability due to the protection of strong hydrophobic barrier from F and PVDF long chain.Aging at 45%±5%relative humidity(RH)for 2400 h and 850 C for300 h,respectively,the unsealed PVDF devices can maintain over 90%of the initial PCE.It indicates that suitable polymer additives can improve the film quality to acquire high-performance and stable PSCs and lay a foundation to design new perovskite light absorption layer with different polymers for the further development of PSCs.展开更多
The theological behavior of poly(vinylidene fluoride)(PVDF)samples of different molecular weights was investigated by means of high pressure capillary rheometer and rotational rheometer.Information on the rheological ...The theological behavior of poly(vinylidene fluoride)(PVDF)samples of different molecular weights was investigated by means of high pressure capillary rheometer and rotational rheometer.Information on the rheological properties of such materials above melt temperatures is of interest as this can lead to an improved understanding of polymer behavior in processing and fabrication technologies.Shift factors derived from time-temperature superposition showed good fit to the Arrhenius equation with a flow activa...展开更多
Ferroelectric polymer poly(vinylidene fluoride)(PVDF)has received great research interest because of its special electroactive properties which are strongly dependent on the crystalline structures and in turn processi...Ferroelectric polymer poly(vinylidene fluoride)(PVDF)has received great research interest because of its special electroactive properties which are strongly dependent on the crystalline structures and in turn processing conditions.The effect of molecular weight and crystallization temperature on the micro-structure and macro-properties of PVDF films casted from dimethyl sulfoxide(DMSO)solvent is investigated.The results demonstrated that a low molecular weight(180 kg/mol)and a low evaporation temperature(50℃)favored the formation of polarγ-phase,while a high molecular weight(1000 kg/mol)and a high evaporation temperature(125℃)made PVDF crystallize intoα-phase.Compared with films casted at 50℃,films casted at 125℃exhibited higher dielectric loss at a low electric field and less loss conductivity at a high electric field,which was due to their low degrees of crystallinity and fine evaporation of the solvent,respectively.PVDF with a molecular weight of 180 kg/mol casted at 125℃exhibited the highest remnant polarization(0.062 C/m^(2))among all of the solution-processed films,being a result of high chain mobility resulted from the low molecular weight.展开更多
A novel approach for the surface modification of poly(vinylidene fluoride)(PVDF)membrane was successfully realized through alkaline treatment,UV-induced bromine addition,and followed by surface-initiated atom transfer...A novel approach for the surface modification of poly(vinylidene fluoride)(PVDF)membrane was successfully realized through alkaline treatment,UV-induced bromine addition,and followed by surface-initiated atom transfer radical polymerization(ATRP)of methyl methacrylate(MMA).Chemical changes on the PVDF membrane before and after modification were analyzed with attenuated total reflectance Fourier transform infrared spectroscopy(ATR/FT-IR)and X-ray photoelectron spectroscopy(XPS).Primary kinetic study revealed...展开更多
In order to improve the water permeability of poly(vinylidene fluoride)(PVDF)ultrafiltration(UF)membranes with low molecular weight cut-off(MWCO),polydopamine(PDA)was employed in the membrane preparation process.Owing...In order to improve the water permeability of poly(vinylidene fluoride)(PVDF)ultrafiltration(UF)membranes with low molecular weight cut-off(MWCO),polydopamine(PDA)was employed in the membrane preparation process.Owing to itsmerits of material-independent adhesion,PDAwas coated on inorganic particles or added in coagulation bath to tailor the final membrane structure and property.The introduction of PDA broke through the permeability/selectivity trade-off of the PVDF membrane.By adding the PDA coated titaniumdioxide(PDA/TiO2)nanoparticles,water flux increased by 287% while MWCO kept similar with the pristine PVDF membrane.Thermodynamics and Kinetics of the PVDF/additives/non-solvent were analyzed and shown that nanoparticles reduced the thermodynamic stability and increased the phase separation speed,and the speed can be adjusted using different nanoparticles.Additionally,X-ray diffraction(XRD)test indicated that PVDF crystalline form changed fromαphase to β phase after adding different nanoparticles.Permeability/selectivity trade-offwas broken through by DA addition in coagulation bath.Compared with the original PVDF membrane,when the DA concentration of the coagulation bath was 2.0 g·L^−1,water flux increased by 312%,and MWCO of the PVDF membrane ranged in 10,000 to 20,000 Da as well as contact angle decreased from 81.4°to 45°.展开更多
CCl_3SO_2Br used as a 'telogen' reacts with CH_2=CF_2 to give mainly the 'mono- adduct' CCl_3CH_2CF_2Br, together with very small amouats of CCl_3CF_2CH_2Br, CCl_2BrCH_2CF_2Br and the 'di-adduct...CCl_3SO_2Br used as a 'telogen' reacts with CH_2=CF_2 to give mainly the 'mono- adduct' CCl_3CH_2CF_2Br, together with very small amouats of CCl_3CF_2CH_2Br, CCl_2BrCH_2CF_2Br and the 'di-adduct' CCl_3(CH_2CF_2)_2Br. The result indicates that CCl_3SO_2Br can be used as an addendum in trichloromethyl-bromo-addition reactions to olefins.展开更多
The effects of stretching ratio and stretching temperature on pbase transition of melt-spun poly ( vinylidene fluoride ) fibers were investigated and analyzed by using scanning electron microscopy, wide angle X- ray...The effects of stretching ratio and stretching temperature on pbase transition of melt-spun poly ( vinylidene fluoride ) fibers were investigated and analyzed by using scanning electron microscopy, wide angle X- ray diffraction, differential scanning calorimetry and Fourier transfer infrared spectroscopy. The β phase exists in the as-spun fiber. The β phase content increases as the stretching ratio increases. When the stretching temperature is lower than 100 ℃ , enhancing temperature is good for the transition of phase a to ft. By contrast, when the stretching temperature is higher than 100 ℃ , enhancing temperature is unfavourable for the transition of phase a to β. Increasing the draw temperature increases the α-phase content.展开更多
The effect of temperature on the electrical conductivity(σ)and Seebeck coefficient(S)of n-type vapor grown carbon nanofibers(CNFs)and poly(vinylidene fluoride)(PVDF)melt-mixed with 15 wt%of those CNFs is analyzed.At ...The effect of temperature on the electrical conductivity(σ)and Seebeck coefficient(S)of n-type vapor grown carbon nanofibers(CNFs)and poly(vinylidene fluoride)(PVDF)melt-mixed with 15 wt%of those CNFs is analyzed.At 40°C,the CNFs show stable n-type character(S=-4.8μV·K^(-1))with anσof ca.165 S·m^(-1),while the PVDF/CNF composite film shows anσof ca.9 S·m^(-1)and near-zero S(S=-0.5μV·K^(-1)).This experimental reduction in S is studied by the density functional tight binding(DFTB)method revealing a contact electron transfer from the CNFs to the PVDF in the interface.Moreover,in the temperature range from 40°C to 100°C,theσ(T)of the CNFs and PVDF/CNF film,successfully described by the 3D variable range hopping(VRH)model,is explained as consequence of a thermally activated backscattering mechanism.On the contrary,the S(T)from 40°C to 100°C of the PVDF/CNF film,which satisfactorily matches the model proposed for some multi-walled carbon nanotube(MWCNT)doped mats;however,it does not follow the increase in S(T)found for CNFs.All these findings are presented with the aim of discerning the role of these n-type vapor grown carbon nanofibers on theσand S of their melt-mixed polymer composites.展开更多
With concerns in energy crisis and global warming, researchers are actively investigating alternative energy renewable solutions. Among the various methods, piezoelectric transduction stands out due to its impressive ...With concerns in energy crisis and global warming, researchers are actively investigating alternative energy renewable solutions. Among the various methods, piezoelectric transduction stands out due to its impressive electromechanical coupling factor and coefficient. As a result, piezoelectric energy harvesting has garnered significant attention from the scientific community. In this study, we explored methods to enhance the piezoelectric properties of polyvinylidene fluoride (PVDF) through two distinct approaches. The first approach involved applying external high voltages at various stages during the mixture reaction. The goal was to determine whether this voltage application could alter or enhance PVDF’s piezoelectric conformation by improving the alignment of polarized dipoles. In the second part of our study, we investigated the effects of incorporating various nanostructures (including Iron Oxide, Magnesium Oxide, and Zinc Oxide) into PVDF. To analyze changes in PVDF’s crystalline structure, we utilized Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD) techniques. Additionally, we measured the electric polarization of samples using a Precision LC Meter and examined the morphology of nanofibers through Scanning Electron Microscopy (SEM).展开更多
The crystallization modification of poly(vinylidene fluoride) (PVDF) was investigated for the blend films of PVDF and poiy(methyl methacrylate) (PMMA). The mass crystallinity (Xc) and further, the β-phase c...The crystallization modification of poly(vinylidene fluoride) (PVDF) was investigated for the blend films of PVDF and poiy(methyl methacrylate) (PMMA). The mass crystallinity (Xc) and further, the β-phase content (F(β)) of PVDF, were studied for the asprepared blend films with different mass ratios. In addition, the variations of Xc and F(β) were systematically probed once the PMMA component was removed from the related blend systems. DSC, FTIR and XRD measurements all indicated that 1)Xc, F(β) and even the content of a-phase (F(a)) decreased with the addition of PMMA; 2) with the extraction of PMMA, both Xc and F(β) increased while F(a) decreased. It is worth noting that the increase of Xc and F(β) depended on the relative amount of extracted PMMA (EpMMA), i.e., the more PMMA was removed, the more Xc and F(β) increased. These results reveal the hindrance effect from the PMMA constituent to the crystallization of PVDF, and consequently, this restriction would be released when the PMMA was extracted.展开更多
The effect of PBS on the morphological features of PVDF has been investigated by optical and atomic force microscopies under various conditions. It was found that neat PVDF forms large γform spherulites with extraord...The effect of PBS on the morphological features of PVDF has been investigated by optical and atomic force microscopies under various conditions. It was found that neat PVDF forms large γform spherulites with extraordinarily weak birefringence at 170℃. Adding 30% PBS makes PVDF exhibit intrigued flower-like spherulitic morphology. The growth mechanism was explained by the decrease of the supercooling and the materials dissipation. Increasing the PBS content to 70% favors the formation of ring banded spherulites. Temperature dependent experiments verify the α→γ phase transition occurs from the junction sites of the ot and y crystals, while starts from the centers of α spherulites in the blends. Ring banded structures could be observed in neat PVDF, 70/30 blend and 30/70 blend when crystallized at 155℃, without γ crystals. The band period of PVDF α spherulites increases with crystallization temperature as well as the amount of PBS content. At 140℃, spherulites in neat PVDF lose their ring banded feature, while coarse spherulites consisting of evident lamellar bundles could be found in 30/70 blend.展开更多
Large roughness and structure disorder in ferroelectric ultrathin Langmuir-Blodgett(LB)film results in severe space scatter in electrical,ferroelectric and piezoelectric characteristics,thus limiting the nanoscale res...Large roughness and structure disorder in ferroelectric ultrathin Langmuir-Blodgett(LB)film results in severe space scatter in electrical,ferroelectric and piezoelectric characteristics,thus limiting the nanoscale research and reliability of nano-devices.However,no effective method aiming at large-area uniform organic ferroelectric LB film has ever been reported to date.Herein,we present a facile hot-pressing strategy to prepare relatively large-area poly(vinylidene fluoride)(PVDF)LB film with ultra-smooth surface root mean square(RMS)roughness is 0.3 nm in a 30μm×30μm area comparable to that of metal substrate,which maximized the potential of LB technique to control thickness distribution.More importantly,compared with traditionally annealed LB film,the hot-pressed LB film manifests significantly improved structure uniformity,less fluctuation in ferroelectric characteristics and higher dielectric and piezoelectric responses,owing to the uniform dipole orientation and higher crystalline quality.Besides,different surface charge relaxation behaviors are investigated and the underlying mechanisms are explained in the light of the interplay of surface charge and polarization charge in the case of nanoscale non-uniform switching.We believe that our work not only presents a novel strategy to endow PVDF LB film with unprecedented reliability and improved performance as a competitive candidate for future ferroelectric tunnel junctions(FTJs)and nano electro mechanical systems(NEMS),but also reveals an attracting coupling effect between the surface potential distribution and nanoscale non-uniform switching behavior,which is crucial for the understanding of local transport characterization modulated by band structure,bit signal stability for data-storage application and the related surface charge research,such as charge gradient microscopy(CGM)based on the collection of surface charge on the biased ferroelectric domains.展开更多
Structural regular polyaniline was synthesized via a modified-chemical oxidative polymerization reaction. Highly hydrophilic polyaniline(PANi) and polyaniline-poly(vinylidene fluoride) blend(PANi-PVDF) membranes were ...Structural regular polyaniline was synthesized via a modified-chemical oxidative polymerization reaction. Highly hydrophilic polyaniline(PANi) and polyaniline-poly(vinylidene fluoride) blend(PANi-PVDF) membranes were prepared by solution casting and phase inversion techniques. Both of the mechanical and filtration properties of the membranes depend on the polymer composition and doping level of the blends. The elasticity of the membrane is greatly improved upon introducing poly(vinylidene fluoride) into the blend. The water permeability of the blend membranes is further enhanced when the membranes are doped with hydrochloric acid. The PANi-PVDF blend membranes are capable of recovering metallic gold from the acid/halide leaching streams spontaneous and sustainably, and are promising candidates for wastewater treatments in electronic industries.展开更多
Electrospun poly(vinylidene fluoride)(PVDF)nanofiber web has been widely utilized as a functional material in various flexible sensors and generators due to its high piezoelectricity,ease processability,and low cost.A...Electrospun poly(vinylidene fluoride)(PVDF)nanofiber web has been widely utilized as a functional material in various flexible sensors and generators due to its high piezoelectricity,ease processability,and low cost.Among all the crystalline phases of PVDF,β-phase is a key property for PVDF nano fiber web,because the con tent of β-phase is directly proporti onal to piezoelectric performa nee of PVDF nano fiber web.Herein,the impact of graphe ne con tent(GC),tip-to-collector dista nee(TCD),and rotational speed of collector(RSC),as well as their interactions on theβ-phase formation of PVDF nano fiber web is systematically investigated via design of experime ntal method.The fraction of each crystalline phase of PVDF nano fiber web is calculated by FTIR spectra,and the crystallinity is determined by XRD patterns.The influences of GC,TCD,and RSC on both β-phase fraction and crystallinity of PVDF nanofiber are analyzed using Minitab program.The results show that GC,TCD,and RSC all have significa nt effect on the β-phase content of PVDF nano fiber web,and GC is the most significant one.In addition,an optimal electrospinning condition(GC=1 wt%,TCD=4 cm,and RSC=2000 r·min^-1)to fabricate high 0-phase crystallinity of PVDF nanofiber web is drawn,under which the crystallinity can reach 41.7%.The contributions in this study could provide guidanee for future research on fabricating high performance PVDF nanofiber web based sensors or generators.展开更多
A non-toxic and environmentally safe diluent,acetyl tributyl citrate,was employed to prepare poly(vinylidene fluoride)-co-hexafluoropropylene membranes via thermally induced phase separation.Effects of the polymer con...A non-toxic and environmentally safe diluent,acetyl tributyl citrate,was employed to prepare poly(vinylidene fluoride)-co-hexafluoropropylene membranes via thermally induced phase separation.Effects of the polymer concentration on the phase diagram,membrane morphology,hydrophobicity,pore size,porosity and mechanical properties(tensile stress and elongation at break)were investigated.The results showed that the pore size and porosity tended to decrease with increasing polymer concentration,whereas the contact angle,liquid entry pressure and mechanical properties showed the opposite trend.In direct contact membrane distillation operation with 3.5 wt-%sodium chloride solution as the feed solution,the prepared membranes performed high salt rejection(>99.9%).Furthermore,the prepared membranes retained excellent performance in long-term stability tests regarding the permeate flux and salt rejection. ne distillation.展开更多
Poly(vinylidene fluoride) (PVDF)/titanium dioxide (TiO2) hybrid membranes were prepared using nano-TiO2 as the modifier, and characterized by Transmis- sion Electron Microscope (TEM), Fourier transform infrare...Poly(vinylidene fluoride) (PVDF)/titanium dioxide (TiO2) hybrid membranes were prepared using nano-TiO2 as the modifier, and characterized by Transmis- sion Electron Microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), scanning electron micro- scope (SEM), atomic force microscope (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The characterization results demonstrated that nano-sized TiO2 particles dispersed homogeneously within the PVDF matrix, contributing to more hydroxyls and smoother surfaces. Moreover, permeate flux, retention factor, porosity, contact angle and anti-fouling tests were carried out to evaluate the effect of TiO2 concentration on the performance of PVDF membranes. Among all the prepared membranes, PVDF/TiO2 membrane containing 10 vol.% TiO2 exhibited the best hydrophilicity with an average pure water flux up to 237 L.mE.h1, higher than that of unmodified PVDF membranes (155L.m2.h ). Besides, the bovine serum albumin rejection of the hybrid membrane was improved evidently from 52.3% to 70.6%, and the contact angle was significantly lowered from 83° to 60°, while the average pore size and its distribution became smaller and narrower.展开更多
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.10804020), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.200802461088), and the Shanghai Leading Academic Discipline Project (No.B113).
文摘We report the observation of asymmetric switching dual peaks in ferroelectric copolymer films. These dual peaks occurs when the poling electric field is just below the coercive field and can be removed by continuous application of high enough switching voltage. Our experimental observations can be explained by the injection and the redistribution of space charges in ferroelectric films.
基金the financial support of the National Natural Science Foundation of China(Grant No.21606125)the Natural Science Foundation of Jiangsu Province(Grant No.BK20160984)+3 种基金the National Key R&D Program of China(Grant No.2017YFC0403702)the Materials-Oriented Chemical Engineering State Key Laboratory Program(KL16-09)the open project program of Jiangsu Key Lab for Chemistry of Low-Dimensional Materials(JSKC17005)the Priority Academic Program Development of Jiangsu Higher Education Institution(PAPD)。
文摘Ionic liquid(IL),1-butyl-3-methylimidazolium hexafluorophosphate([BMIM]PF6)as a new and environmentally friendly diluent was introduced to prepare poly(vinylidene fluoride)(PVDF)membranes via thermally induced phase separation(TIPS).Phase diagram of PVDF/[BMIM]PF6 was measured.The effects of polymer concentration and quenching temperature on the morphologies,properties,and performances of the PVDF membranes were investigated.When the polymer concentration was 15 wt%,the pure water flux of the fabricated membrane was up to nearly 2000 L·m-2·h-1,along with adequate mechanical strength.With the increasing of PVDF concentration and quenching temperature,mean pore size and water permeability of the membrane decreased.SEM results showed that PVDF membranes manufactured by ionic liquid(BMIm PF6)presented spherulite structure.And the PVDF membranes were represented asβphase by XRD and FTIR characterization.It provides a new way to prepare PVDF membranes with piezoelectric properties.
基金Supported by the Research Fund for the Doctoral Program of Higher Education of China(No.20060183009)
文摘Poly(vinylidene fluoride)(PVDF)/multi-walled carbon nanotube(MWCNT) nanocomposites were prepared by means of ultrasonic dispersion method. X-ray diffraction(XRD) results indicate that incorporating MWCNTs into PVDF caused the formation of β phase. A thermal annealing at 130 ℃ confirmed that the β phase was stable in the nanocomposites. Differential scanning calorimetry(DSC) results indicate that the melting temperature slightly increased while the heat of fusion markedly decreased with increasing MWCNT content. The tensile strength and modulus of PVDF were improved by loading the MWCNTs. The scanning electron microscopy(SEM) observations showed that MWCNTs were uniformly dispersed in the PVDF matrix and an interfacial adhesion between MWCNT and PVDF was achieved, which was responsible for the enhancement in the tensile strength and modulus of PVDE.
基金Research Fund for the Doctoral Program of Higher Education of China(No.20060183009)
文摘The crystalline structures, morphologies, and mechanical properties of poly(vinylidene fluoride)/clay nanocomposites were studied using X-ray diffraction(XRD), transmission electron microscopy(TEM), Fourier transform infrared spectroscopy(FTIR), polarized optical microscopy(POM), and tensile tests. The results of XRD and TEM show that organoclays are dispersed in the poly(vinylidene fluoride)(PVDF) matrix. A clay-induced crystal transformation from α-phase to β-phase of PVFD was confirmed by XRD and FTIR. Clay layers restricted the growth of spherulite. The tensile tests indicate that the tensile modulus and yield strength as well as the elongation at break decrease when clay is loaded.
基金financially supported by Natural Science Foundation of Anhui Province(Grant No.2008085QE208)the National Natural Science Foundation of China(51961165106)。
文摘Perovskite solar cells(PSCs)have become the promising next-generation photovoltaic devices due to their excellent photoelectric performances,and the power conversion efficiencies(PCEs)have experienced unprecedented rapid increase in recent years.However,to realize the practical application of PSCs,high performance and long-term stability are required and the preparation of high-quality perovskite film is the key.Herein,we adopt a simple and effective method to prepare high-quality perovskite films by introducing the poly(vinylidene fluoride)(PVDF)polymer additive with abundant hydrophobic F.As the growth template,the PVDF promotes the growth of perovskite crystal,improves the crystallinity and film morphology,thus reducing defect density and inhibiting carrier recombination.The results show that the photovoltaic performances of the perovskite device with PVDF are meaningfully improved,and a high PCE of 21.42%is achieved with an improvement of 10.87%,More importantly,the PVDF-based perovskites display greatly enhanced humidity and heat stability due to the protection of strong hydrophobic barrier from F and PVDF long chain.Aging at 45%±5%relative humidity(RH)for 2400 h and 850 C for300 h,respectively,the unsealed PVDF devices can maintain over 90%of the initial PCE.It indicates that suitable polymer additives can improve the film quality to acquire high-performance and stable PSCs and lay a foundation to design new perovskite light absorption layer with different polymers for the further development of PSCs.
基金the Special Funds for Major State Basic Research Projects,China(No.2003CB615705).
文摘The theological behavior of poly(vinylidene fluoride)(PVDF)samples of different molecular weights was investigated by means of high pressure capillary rheometer and rotational rheometer.Information on the rheological properties of such materials above melt temperatures is of interest as this can lead to an improved understanding of polymer behavior in processing and fabrication technologies.Shift factors derived from time-temperature superposition showed good fit to the Arrhenius equation with a flow activa...
基金Fundamental Research Funds for the Central Universities,China(No.2232021D-01)Shanghai Pujiang Program,China(No.20PJ1400600)。
文摘Ferroelectric polymer poly(vinylidene fluoride)(PVDF)has received great research interest because of its special electroactive properties which are strongly dependent on the crystalline structures and in turn processing conditions.The effect of molecular weight and crystallization temperature on the micro-structure and macro-properties of PVDF films casted from dimethyl sulfoxide(DMSO)solvent is investigated.The results demonstrated that a low molecular weight(180 kg/mol)and a low evaporation temperature(50℃)favored the formation of polarγ-phase,while a high molecular weight(1000 kg/mol)and a high evaporation temperature(125℃)made PVDF crystallize intoα-phase.Compared with films casted at 50℃,films casted at 125℃exhibited higher dielectric loss at a low electric field and less loss conductivity at a high electric field,which was due to their low degrees of crystallinity and fine evaporation of the solvent,respectively.PVDF with a molecular weight of 180 kg/mol casted at 125℃exhibited the highest remnant polarization(0.062 C/m^(2))among all of the solution-processed films,being a result of high chain mobility resulted from the low molecular weight.
基金This work was financially supported by the National Natural Science Foundation of China for Distinguished Young Scholars(No. 50625309)the Zhejiang Provincial Natural Science Foundation of China(No. Z406260).
文摘A novel approach for the surface modification of poly(vinylidene fluoride)(PVDF)membrane was successfully realized through alkaline treatment,UV-induced bromine addition,and followed by surface-initiated atom transfer radical polymerization(ATRP)of methyl methacrylate(MMA).Chemical changes on the PVDF membrane before and after modification were analyzed with attenuated total reflectance Fourier transform infrared spectroscopy(ATR/FT-IR)and X-ray photoelectron spectroscopy(XPS).Primary kinetic study revealed...
基金the financial support from National Key R&D Program of China(2017YFD0400402)National Natural Science Foundation of China(No.21576132).
文摘In order to improve the water permeability of poly(vinylidene fluoride)(PVDF)ultrafiltration(UF)membranes with low molecular weight cut-off(MWCO),polydopamine(PDA)was employed in the membrane preparation process.Owing to itsmerits of material-independent adhesion,PDAwas coated on inorganic particles or added in coagulation bath to tailor the final membrane structure and property.The introduction of PDA broke through the permeability/selectivity trade-off of the PVDF membrane.By adding the PDA coated titaniumdioxide(PDA/TiO2)nanoparticles,water flux increased by 287% while MWCO kept similar with the pristine PVDF membrane.Thermodynamics and Kinetics of the PVDF/additives/non-solvent were analyzed and shown that nanoparticles reduced the thermodynamic stability and increased the phase separation speed,and the speed can be adjusted using different nanoparticles.Additionally,X-ray diffraction(XRD)test indicated that PVDF crystalline form changed fromαphase to β phase after adding different nanoparticles.Permeability/selectivity trade-offwas broken through by DA addition in coagulation bath.Compared with the original PVDF membrane,when the DA concentration of the coagulation bath was 2.0 g·L^−1,water flux increased by 312%,and MWCO of the PVDF membrane ranged in 10,000 to 20,000 Da as well as contact angle decreased from 81.4°to 45°.
文摘CCl_3SO_2Br used as a 'telogen' reacts with CH_2=CF_2 to give mainly the 'mono- adduct' CCl_3CH_2CF_2Br, together with very small amouats of CCl_3CF_2CH_2Br, CCl_2BrCH_2CF_2Br and the 'di-adduct' CCl_3(CH_2CF_2)_2Br. The result indicates that CCl_3SO_2Br can be used as an addendum in trichloromethyl-bromo-addition reactions to olefins.
基金Funded by the Tianjin Natural Science Foundation ( No.003602611)
文摘The effects of stretching ratio and stretching temperature on pbase transition of melt-spun poly ( vinylidene fluoride ) fibers were investigated and analyzed by using scanning electron microscopy, wide angle X- ray diffraction, differential scanning calorimetry and Fourier transfer infrared spectroscopy. The β phase exists in the as-spun fiber. The β phase content increases as the stretching ratio increases. When the stretching temperature is lower than 100 ℃ , enhancing temperature is good for the transition of phase a to ft. By contrast, when the stretching temperature is higher than 100 ℃ , enhancing temperature is unfavourable for the transition of phase a to β. Increasing the draw temperature increases the α-phase content.
基金financially supported by the European Regional Development Fund through the Operational Competitiveness Program and the National Foundation for Science and Technology of Portugal(FCT)(No.UID/CTM/00264/2020 of Centre for Textile Science and Technology(2C2T)on its components Base and programmatic)support from project GreenAuto-Green Innovation for the Automotive Industry-PPS 3-Technical Textiles for the vehicle(Refa C6448637037-00000013)financed by EU funds,through the Plano de Recuperacao e Resiliência(PRR),managed by IAPMEI,I.P.-Agência para a Competitividade e Inovacao+2 种基金support within the scope of the project CICECO-Aveiro Institute of Materials,UIDB/50011/2020,UIDP/50011/2020&LA/P/0006/2020,financed by national funds through the FCT/MCTES(PIDDAC)support from the Spanish Ministry of Universities with European Union funds-Next Generation EU through a Margarita Salas fellowshipsupport received from National Science Foundation under PREM award DMR 2122178。
文摘The effect of temperature on the electrical conductivity(σ)and Seebeck coefficient(S)of n-type vapor grown carbon nanofibers(CNFs)and poly(vinylidene fluoride)(PVDF)melt-mixed with 15 wt%of those CNFs is analyzed.At 40°C,the CNFs show stable n-type character(S=-4.8μV·K^(-1))with anσof ca.165 S·m^(-1),while the PVDF/CNF composite film shows anσof ca.9 S·m^(-1)and near-zero S(S=-0.5μV·K^(-1)).This experimental reduction in S is studied by the density functional tight binding(DFTB)method revealing a contact electron transfer from the CNFs to the PVDF in the interface.Moreover,in the temperature range from 40°C to 100°C,theσ(T)of the CNFs and PVDF/CNF film,successfully described by the 3D variable range hopping(VRH)model,is explained as consequence of a thermally activated backscattering mechanism.On the contrary,the S(T)from 40°C to 100°C of the PVDF/CNF film,which satisfactorily matches the model proposed for some multi-walled carbon nanotube(MWCNT)doped mats;however,it does not follow the increase in S(T)found for CNFs.All these findings are presented with the aim of discerning the role of these n-type vapor grown carbon nanofibers on theσand S of their melt-mixed polymer composites.
文摘With concerns in energy crisis and global warming, researchers are actively investigating alternative energy renewable solutions. Among the various methods, piezoelectric transduction stands out due to its impressive electromechanical coupling factor and coefficient. As a result, piezoelectric energy harvesting has garnered significant attention from the scientific community. In this study, we explored methods to enhance the piezoelectric properties of polyvinylidene fluoride (PVDF) through two distinct approaches. The first approach involved applying external high voltages at various stages during the mixture reaction. The goal was to determine whether this voltage application could alter or enhance PVDF’s piezoelectric conformation by improving the alignment of polarized dipoles. In the second part of our study, we investigated the effects of incorporating various nanostructures (including Iron Oxide, Magnesium Oxide, and Zinc Oxide) into PVDF. To analyze changes in PVDF’s crystalline structure, we utilized Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD) techniques. Additionally, we measured the electric polarization of samples using a Precision LC Meter and examined the morphology of nanofibers through Scanning Electron Microscopy (SEM).
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 21072221), the President Fund of Graduate University of CAS (Grant No. 095101CY00), and the State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (KF2008-04).
文摘The crystallization modification of poly(vinylidene fluoride) (PVDF) was investigated for the blend films of PVDF and poiy(methyl methacrylate) (PMMA). The mass crystallinity (Xc) and further, the β-phase content (F(β)) of PVDF, were studied for the asprepared blend films with different mass ratios. In addition, the variations of Xc and F(β) were systematically probed once the PMMA component was removed from the related blend systems. DSC, FTIR and XRD measurements all indicated that 1)Xc, F(β) and even the content of a-phase (F(a)) decreased with the addition of PMMA; 2) with the extraction of PMMA, both Xc and F(β) increased while F(a) decreased. It is worth noting that the increase of Xc and F(β) depended on the relative amount of extracted PMMA (EpMMA), i.e., the more PMMA was removed, the more Xc and F(β) increased. These results reveal the hindrance effect from the PMMA constituent to the crystallization of PVDF, and consequently, this restriction would be released when the PMMA was extracted.
基金financially supported by the National Natural Science Foundations of China(No.20974011)the program of Introducing Talents of Discipline to Universities(No.B08003)
文摘The effect of PBS on the morphological features of PVDF has been investigated by optical and atomic force microscopies under various conditions. It was found that neat PVDF forms large γform spherulites with extraordinarily weak birefringence at 170℃. Adding 30% PBS makes PVDF exhibit intrigued flower-like spherulitic morphology. The growth mechanism was explained by the decrease of the supercooling and the materials dissipation. Increasing the PBS content to 70% favors the formation of ring banded spherulites. Temperature dependent experiments verify the α→γ phase transition occurs from the junction sites of the ot and y crystals, while starts from the centers of α spherulites in the blends. Ring banded structures could be observed in neat PVDF, 70/30 blend and 30/70 blend when crystallized at 155℃, without γ crystals. The band period of PVDF α spherulites increases with crystallization temperature as well as the amount of PBS content. At 140℃, spherulites in neat PVDF lose their ring banded feature, while coarse spherulites consisting of evident lamellar bundles could be found in 30/70 blend.
基金supported by the National Natural Science Foundation of China(51625202)the National Key Research&Development Program of China(2017YFB0701603)。
文摘Large roughness and structure disorder in ferroelectric ultrathin Langmuir-Blodgett(LB)film results in severe space scatter in electrical,ferroelectric and piezoelectric characteristics,thus limiting the nanoscale research and reliability of nano-devices.However,no effective method aiming at large-area uniform organic ferroelectric LB film has ever been reported to date.Herein,we present a facile hot-pressing strategy to prepare relatively large-area poly(vinylidene fluoride)(PVDF)LB film with ultra-smooth surface root mean square(RMS)roughness is 0.3 nm in a 30μm×30μm area comparable to that of metal substrate,which maximized the potential of LB technique to control thickness distribution.More importantly,compared with traditionally annealed LB film,the hot-pressed LB film manifests significantly improved structure uniformity,less fluctuation in ferroelectric characteristics and higher dielectric and piezoelectric responses,owing to the uniform dipole orientation and higher crystalline quality.Besides,different surface charge relaxation behaviors are investigated and the underlying mechanisms are explained in the light of the interplay of surface charge and polarization charge in the case of nanoscale non-uniform switching.We believe that our work not only presents a novel strategy to endow PVDF LB film with unprecedented reliability and improved performance as a competitive candidate for future ferroelectric tunnel junctions(FTJs)and nano electro mechanical systems(NEMS),but also reveals an attracting coupling effect between the surface potential distribution and nanoscale non-uniform switching behavior,which is crucial for the understanding of local transport characterization modulated by band structure,bit signal stability for data-storage application and the related surface charge research,such as charge gradient microscopy(CGM)based on the collection of surface charge on the biased ferroelectric domains.
基金supported by the Public Welfare Technology Applied Research Projects of Zhejiang Province (2014C33G3220001)the National Natural Science Foundation of China (61674153, 51525103, 61504154, 11474295)+3 种基金the Youth Innovation Promotion Association of the Chinese Academy of SciencesNatural Science Foundation of Zhejiang Province (LR17E020001)Ningbo Science and Technology Innovation Team (2015B11001)Ningbo International Cooperation Projects (2015B11027)
文摘Structural regular polyaniline was synthesized via a modified-chemical oxidative polymerization reaction. Highly hydrophilic polyaniline(PANi) and polyaniline-poly(vinylidene fluoride) blend(PANi-PVDF) membranes were prepared by solution casting and phase inversion techniques. Both of the mechanical and filtration properties of the membranes depend on the polymer composition and doping level of the blends. The elasticity of the membrane is greatly improved upon introducing poly(vinylidene fluoride) into the blend. The water permeability of the blend membranes is further enhanced when the membranes are doped with hydrochloric acid. The PANi-PVDF blend membranes are capable of recovering metallic gold from the acid/halide leaching streams spontaneous and sustainably, and are promising candidates for wastewater treatments in electronic industries.
基金The Cotton Textiles Research Trust with the project"Protective Efficiency of Respiratory Protective Equipment against Byssinosis for Cotton Workers"The University of Manchester through project AA14512(UMRI project"Graphene-Smart Textiles E-Healthcare Network")。
文摘Electrospun poly(vinylidene fluoride)(PVDF)nanofiber web has been widely utilized as a functional material in various flexible sensors and generators due to its high piezoelectricity,ease processability,and low cost.Among all the crystalline phases of PVDF,β-phase is a key property for PVDF nano fiber web,because the con tent of β-phase is directly proporti onal to piezoelectric performa nee of PVDF nano fiber web.Herein,the impact of graphe ne con tent(GC),tip-to-collector dista nee(TCD),and rotational speed of collector(RSC),as well as their interactions on theβ-phase formation of PVDF nano fiber web is systematically investigated via design of experime ntal method.The fraction of each crystalline phase of PVDF nano fiber web is calculated by FTIR spectra,and the crystallinity is determined by XRD patterns.The influences of GC,TCD,and RSC on both β-phase fraction and crystallinity of PVDF nanofiber are analyzed using Minitab program.The results show that GC,TCD,and RSC all have significa nt effect on the β-phase content of PVDF nano fiber web,and GC is the most significant one.In addition,an optimal electrospinning condition(GC=1 wt%,TCD=4 cm,and RSC=2000 r·min^-1)to fabricate high 0-phase crystallinity of PVDF nanofiber web is drawn,under which the crystallinity can reach 41.7%.The contributions in this study could provide guidanee for future research on fabricating high performance PVDF nanofiber web based sensors or generators.
基金supported by the National Natural Science Foundation of China(Grant No.22078146)the National Key R&D Program of China(Grant No.2020YFC0862903)+4 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20200091)the Jiangsu Province Department of Human Resources and Social Security(Grant No.JNHB-036)the Materials-Oriented Chemical Engineering State Key Laboratory Program(Grant No.KL19-04)the Priority Academic Program Development of Jiangsu Higher Education Institution(PAPD).N.Tavajohi is grateful for financial support by the Kempe Foundation(Grant No.SMK-1850)Bio4energy program(Grant No.B4E3-TM-1-01).
文摘A non-toxic and environmentally safe diluent,acetyl tributyl citrate,was employed to prepare poly(vinylidene fluoride)-co-hexafluoropropylene membranes via thermally induced phase separation.Effects of the polymer concentration on the phase diagram,membrane morphology,hydrophobicity,pore size,porosity and mechanical properties(tensile stress and elongation at break)were investigated.The results showed that the pore size and porosity tended to decrease with increasing polymer concentration,whereas the contact angle,liquid entry pressure and mechanical properties showed the opposite trend.In direct contact membrane distillation operation with 3.5 wt-%sodium chloride solution as the feed solution,the prepared membranes performed high salt rejection(>99.9%).Furthermore,the prepared membranes retained excellent performance in long-term stability tests regarding the permeate flux and salt rejection. ne distillation.
文摘Poly(vinylidene fluoride) (PVDF)/titanium dioxide (TiO2) hybrid membranes were prepared using nano-TiO2 as the modifier, and characterized by Transmis- sion Electron Microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), scanning electron micro- scope (SEM), atomic force microscope (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The characterization results demonstrated that nano-sized TiO2 particles dispersed homogeneously within the PVDF matrix, contributing to more hydroxyls and smoother surfaces. Moreover, permeate flux, retention factor, porosity, contact angle and anti-fouling tests were carried out to evaluate the effect of TiO2 concentration on the performance of PVDF membranes. Among all the prepared membranes, PVDF/TiO2 membrane containing 10 vol.% TiO2 exhibited the best hydrophilicity with an average pure water flux up to 237 L.mE.h1, higher than that of unmodified PVDF membranes (155L.m2.h ). Besides, the bovine serum albumin rejection of the hybrid membrane was improved evidently from 52.3% to 70.6%, and the contact angle was significantly lowered from 83° to 60°, while the average pore size and its distribution became smaller and narrower.