Variations of picoplankton groups were investigated over a one-month period in Daya Bay and Sanya Bay,in the northern South China Sea.The two coastal regions exhibited different variation patterns in physicochemical p...Variations of picoplankton groups were investigated over a one-month period in Daya Bay and Sanya Bay,in the northern South China Sea.The two coastal regions exhibited different variation patterns in physicochemical parameters.Moreover,the diel variations of picoplankton groups were different between the two bays.The abundance of the picoplankton in Sanya Bay displayed a pronounced diel variation,while it was not significant in Daya Bay.In addition,some similar patterns of picoplankton abundance were discovered.In the two bays,virioplankton exhibited the smallest fluctuation range,whereas picocyanobacteria fluctuated most markedly.The fluctuation range of picoplankton groups was larger in spring tide than in neap tide,especially in Sanya Bay.Random forest model analysis demonstrated that the variation of picoplankton groups was attributed to physical and chemical factors in Sanya Bay and Daya Bay,respectively.Therefore,our findings suggest that virioplankton abundance can persist more stably in response to changing environmental conditions compared to bacterioplankton and picophytoplankton.展开更多
Distribution of one group of marine viral particles along the Kuroshio Current and theadjacent area was investigated in June, 1998 using flow cytometry for the first time. The position of thisgroup of virioplankton in...Distribution of one group of marine viral particles along the Kuroshio Current and theadjacent area was investigated in June, 1998 using flow cytometry for the first time. The position of thisgroup of virioplankton in flow cytometry plots coincided with the position of the V-I group reported byMarie et al. (1999). Abundances of this group of virioplankton in the surface water ranged from 3.4×10<sup>5</sup> to 2. 3×10<sup>6</sup> ml<sup>-1</sup> in the investigated area. High abundance occurred in the shelf water and low abun-展开更多
Virioplankton dynamics at seven sample sites(from two freshwater lakes) with different trophic states were monitored over the period of a year.Water was sampled monthly from August 2004 to July 2005,and the abundances...Virioplankton dynamics at seven sample sites(from two freshwater lakes) with different trophic states were monitored over the period of a year.Water was sampled monthly from August 2004 to July 2005,and the abundances of viruses and bacteria were measured using direct epifluorescence microscopy counting.Results indicated that both natural and anthropogenic factors could influence the distribution of virioplankton.Temporally,viral abundance was significantly correlated to bacterial density and water temperature.Spatially,viral abundance was significantly correlated to trophic state.This in turn indicated that viral abundance was directly dependant on host abundance in eutrophic lakes,while trophic state and temperature could drive the distribution of virioplankton.The virus-bacteria ratio was significantly lower in less productive water-bodies.The result implied that the control of virioplankton on their hosts may change according to the host density.展开更多
Since viruses are able to influence the trophic status and community structure they should be accessed and accounted in ecosystem functioning and management models. So, this work met a set of biological, chemical and ...Since viruses are able to influence the trophic status and community structure they should be accessed and accounted in ecosystem functioning and management models. So, this work met a set of biological, chemical and physical time series in order to explore the correlations with marine virioplankton community across different trophic gradients. The case studied is the Arraial do Cabo upwelling system, northeast of Rio de Janeiro State in Southeast coast of Brazil. The main goal is to evolve three type of artificial neural network (ANN) by genetic algorithm (GA) optimization to predict virioplankton abundance and dynamic. The input variables range from the abundance of phytoplankton, bacterioplankton and its ratios acquired by one in situ and another ex situ flow cytometers. These data were collected with weekly frequency from August 2006 to June 2007. Our results show viruses being highly correlated to their host, and that GA provided an efficient method of optimizing ANN architectures to predict the virioplankton abundance. The RBF-NN model presented the best performance to an accuracy of 97% for any period in the year. A discussion and ecological interpretations about the system behavior is also provided.展开更多
By using flow cytometry techniques, we investigated the abundance and composition of the heterotrophic prokaryotes, virioplankton and picophytoplankton community in the Pearl River Estuary and Daya Bay in the summer o...By using flow cytometry techniques, we investigated the abundance and composition of the heterotrophic prokaryotes, virioplankton and picophytoplankton community in the Pearl River Estuary and Daya Bay in the summer of 2012. We identified two subgroups of prokaryotes, high nucleic acid(HNA) and low nucleic acid(LNA), characterized by different nucleic acid contents. HNA abundance was significantly correlated with larger phytoplankton and Synechococcus(Syn) abundance, which suggested the important role of organic substrates released from primary producers on bacterial growth. Although LNA did not show any association with environmental variables, it was a vital component of the microbial community. In contrast to previous studies, the total virioplankton concentration had a poor relationship with nutrient availability. The positive relationship between large-sized phytoplankton abundance and the V-I population confirmed that V-I was a phytoplankton-infecting viral subgroup. Although the V-II group(bacteriophages)was dominant in the virioplankton community, it was not related with prokaryotic abundance, which indicated factors other than hosts controlling V-II abundance or the uncertainty of virus-host coupling. With respect to the picophytoplankton community,our results implied that river input exerted a strong limitation to Syn distribution in the estuary, while picoeukaryotes(Euk) were numerically less abundant and showed a quite different distribution pattern from that of Syn, and hence presented ecological properties distinct from Syn in our two studied areas.展开更多
采用荧光显微技术,对2006年长江口及近海水域20个站点的表层及10m层或潜水体冬、春两季的浮游病毒丰度进行了检测,对浮游病毒丰度在季节(冬、春两季)、水平分布和垂直分布上的变化进行了探讨。调查区浮游病毒丰度在冬、春季节上并无明...采用荧光显微技术,对2006年长江口及近海水域20个站点的表层及10m层或潜水体冬、春两季的浮游病毒丰度进行了检测,对浮游病毒丰度在季节(冬、春两季)、水平分布和垂直分布上的变化进行了探讨。调查区浮游病毒丰度在冬、春季节上并无明显差异,但在水平分布上存在很大差异,河口区浮游病毒直接检测量(Virus Direct Count,VDC)达到107个/ml,近海水域VDC为106个/ml,河口区的浮游病毒丰度都明显高于近海水域病毒丰度(P<0.01)。在垂直分布上,冬、春两季长江口水域水深小于10m的站位,表层浮游病毒丰度与底层病毒丰度无明显差别,水深大于10m的站位,表层水样的浮游病毒丰度都高于10m水层病毒丰度,说明长江口浮游病毒的垂直分布与站位总水深有关。还通过比较各站点VDC与叶绿素a含量的数据,分析了二者之间的相关性:冬季浮游病毒丰度与叶绿素a含量成正相关性;春季浮游病毒丰度与叶绿素a含量成负相关性,但病毒丰度受叶绿素a含量的影响仅为10%—11%。展开更多
基金Supported by the National Natural Science Foundation of China(Nos.42176116,41576126,41890851,U21A6001)the Natural Science Foundation of Guangdong Province(No.2017A030306020)+4 种基金the Guangdong Major Project of Basic and Applied Basic Research(No.2019B030302004)the Rising Star Foundation of the South China Sea Institute of Oceanology(No.NHXX2019ST0101)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2018377)the Science and Technology Planning Project of Guangdong Province of China(No.2021B1212050023)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA19060503)。
文摘Variations of picoplankton groups were investigated over a one-month period in Daya Bay and Sanya Bay,in the northern South China Sea.The two coastal regions exhibited different variation patterns in physicochemical parameters.Moreover,the diel variations of picoplankton groups were different between the two bays.The abundance of the picoplankton in Sanya Bay displayed a pronounced diel variation,while it was not significant in Daya Bay.In addition,some similar patterns of picoplankton abundance were discovered.In the two bays,virioplankton exhibited the smallest fluctuation range,whereas picocyanobacteria fluctuated most markedly.The fluctuation range of picoplankton groups was larger in spring tide than in neap tide,especially in Sanya Bay.Random forest model analysis demonstrated that the variation of picoplankton groups was attributed to physical and chemical factors in Sanya Bay and Daya Bay,respectively.Therefore,our findings suggest that virioplankton abundance can persist more stably in response to changing environmental conditions compared to bacterioplankton and picophytoplankton.
基金This study was supported by the 863 project No.2001AA630509-2,NSFC project No.40232021,30170189 and 4017603
文摘Distribution of one group of marine viral particles along the Kuroshio Current and theadjacent area was investigated in June, 1998 using flow cytometry for the first time. The position of thisgroup of virioplankton in flow cytometry plots coincided with the position of the V-I group reported byMarie et al. (1999). Abundances of this group of virioplankton in the surface water ranged from 3.4×10<sup>5</sup> to 2. 3×10<sup>6</sup> ml<sup>-1</sup> in the investigated area. High abundance occurred in the shelf water and low abun-
基金Supported by the National Natural Science Foundation of China(No.30470344and30670088)Key Technology Project of Hubei Province(No.2006AA305A04)Commonweal Project of State Oceanic Administration of China(No.200705014)
文摘Virioplankton dynamics at seven sample sites(from two freshwater lakes) with different trophic states were monitored over the period of a year.Water was sampled monthly from August 2004 to July 2005,and the abundances of viruses and bacteria were measured using direct epifluorescence microscopy counting.Results indicated that both natural and anthropogenic factors could influence the distribution of virioplankton.Temporally,viral abundance was significantly correlated to bacterial density and water temperature.Spatially,viral abundance was significantly correlated to trophic state.This in turn indicated that viral abundance was directly dependant on host abundance in eutrophic lakes,while trophic state and temperature could drive the distribution of virioplankton.The virus-bacteria ratio was significantly lower in less productive water-bodies.The result implied that the control of virioplankton on their hosts may change according to the host density.
文摘Since viruses are able to influence the trophic status and community structure they should be accessed and accounted in ecosystem functioning and management models. So, this work met a set of biological, chemical and physical time series in order to explore the correlations with marine virioplankton community across different trophic gradients. The case studied is the Arraial do Cabo upwelling system, northeast of Rio de Janeiro State in Southeast coast of Brazil. The main goal is to evolve three type of artificial neural network (ANN) by genetic algorithm (GA) optimization to predict virioplankton abundance and dynamic. The input variables range from the abundance of phytoplankton, bacterioplankton and its ratios acquired by one in situ and another ex situ flow cytometers. These data were collected with weekly frequency from August 2006 to June 2007. Our results show viruses being highly correlated to their host, and that GA provided an efficient method of optimizing ANN architectures to predict the virioplankton abundance. The RBF-NN model presented the best performance to an accuracy of 97% for any period in the year. A discussion and ecological interpretations about the system behavior is also provided.
基金supported by the National Basic Research Program (973 Program) of China (Nos. 2015CB452905, 2015CB452903)the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA11020205)+1 种基金Fund of Key Laboratory of Global Change and Marine-Atmospheric Chemistry, SOA, (GCMAC1209)Public science and technology research funds projects of ocean (201105015-06)
文摘By using flow cytometry techniques, we investigated the abundance and composition of the heterotrophic prokaryotes, virioplankton and picophytoplankton community in the Pearl River Estuary and Daya Bay in the summer of 2012. We identified two subgroups of prokaryotes, high nucleic acid(HNA) and low nucleic acid(LNA), characterized by different nucleic acid contents. HNA abundance was significantly correlated with larger phytoplankton and Synechococcus(Syn) abundance, which suggested the important role of organic substrates released from primary producers on bacterial growth. Although LNA did not show any association with environmental variables, it was a vital component of the microbial community. In contrast to previous studies, the total virioplankton concentration had a poor relationship with nutrient availability. The positive relationship between large-sized phytoplankton abundance and the V-I population confirmed that V-I was a phytoplankton-infecting viral subgroup. Although the V-II group(bacteriophages)was dominant in the virioplankton community, it was not related with prokaryotic abundance, which indicated factors other than hosts controlling V-II abundance or the uncertainty of virus-host coupling. With respect to the picophytoplankton community,our results implied that river input exerted a strong limitation to Syn distribution in the estuary, while picoeukaryotes(Euk) were numerically less abundant and showed a quite different distribution pattern from that of Syn, and hence presented ecological properties distinct from Syn in our two studied areas.
文摘采用荧光显微技术,对2006年长江口及近海水域20个站点的表层及10m层或潜水体冬、春两季的浮游病毒丰度进行了检测,对浮游病毒丰度在季节(冬、春两季)、水平分布和垂直分布上的变化进行了探讨。调查区浮游病毒丰度在冬、春季节上并无明显差异,但在水平分布上存在很大差异,河口区浮游病毒直接检测量(Virus Direct Count,VDC)达到107个/ml,近海水域VDC为106个/ml,河口区的浮游病毒丰度都明显高于近海水域病毒丰度(P<0.01)。在垂直分布上,冬、春两季长江口水域水深小于10m的站位,表层浮游病毒丰度与底层病毒丰度无明显差别,水深大于10m的站位,表层水样的浮游病毒丰度都高于10m水层病毒丰度,说明长江口浮游病毒的垂直分布与站位总水深有关。还通过比较各站点VDC与叶绿素a含量的数据,分析了二者之间的相关性:冬季浮游病毒丰度与叶绿素a含量成正相关性;春季浮游病毒丰度与叶绿素a含量成负相关性,但病毒丰度受叶绿素a含量的影响仅为10%—11%。