Cloud data centers face the largest energy consumption.In order to save energy consumption in cloud data centers,cloud service providers adopt a virtual machine migration strategy.In this paper,we propose an efficient...Cloud data centers face the largest energy consumption.In order to save energy consumption in cloud data centers,cloud service providers adopt a virtual machine migration strategy.In this paper,we propose an efficient virtual machine placement strategy(VMP-SI)based on virtual machine selection and integration.Our proposed VMP-SI strategy divides the migration process into three phases:physical host state detection,virtual machine selection and virtual machine placement.The local regression robust(LRR)algorithm and minimum migration time(MMT)policy are individual used in the first and section phase,respectively.Then we design a virtual machine migration strategy that integrates the process of virtual machine selection and placement,which can ensure a satisfactory utilization efficiency of the hardware resources of the active physical host.Experimental results show that our proposed method is better than the approach in Cloudsim under various performance metrics.展开更多
The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource pr...The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource provisioning,but the necessitated constraints of rapid turnaround time,minimal execution cost,high rate of resource utilization and limited makespan transforms the Load Balancing(LB)process-based Task Scheduling(TS)problem into an NP-hard optimization issue.In this paper,Hybrid Prairie Dog and Beluga Whale Optimization Algorithm(HPDBWOA)is propounded for precise mapping of tasks to virtual machines with the due objective of addressing the dynamic nature of cloud environment.This capability of HPDBWOA helps in decreasing the SLA violations and Makespan with optimal resource management.It is modelled as a scheduling strategy which utilizes the merits of PDOA and BWOA for attaining reactive decisions making with respect to the process of assigning the tasks to virtual resources by considering their priorities into account.It addresses the problem of pre-convergence with wellbalanced exploration and exploitation to attain necessitated Quality of Service(QoS)for minimizing the waiting time incurred during TS process.It further balanced exploration and exploitation rates for reducing the makespan during the task allocation with complete awareness of VM state.The results of the proposed HPDBWOA confirmed minimized energy utilization of 32.18% and reduced cost of 28.94% better than approaches used for investigation.The statistical investigation of the proposed HPDBWOA conducted using ANOVA confirmed its efficacy over the benchmarked systems in terms of throughput,system,and response time.展开更多
Cloud computing represents a novel computing model in the contemporary technology world. In a cloud system, the com- puting power of virtual machines (VMs) and network status can greatly affect the completion time o...Cloud computing represents a novel computing model in the contemporary technology world. In a cloud system, the com- puting power of virtual machines (VMs) and network status can greatly affect the completion time of data intensive tasks. How- ever, most of the current resource allocation policies focus only on network conditions and physical hosts. And the computing power of VMs is largely ignored. This paper proposes a comprehensive resource allocation policy which consists of a data intensive task scheduling algorithm that takes account of computing power of VMs and a VM allocation policy that considers bandwidth between storage nodes and hosts. The VM allocation policy includes VM placement and VM migration algorithms. Related simulations show that the proposed algorithms can greatly reduce the task comple- tion time and keep good load balance of physical hosts at the same time.展开更多
In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the...In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the energy consumption and(processor) resource utilization, is proposed. In TESA, according to load, hosts in data centers are divided into four classes, that is,host with light load, host with proper load, host with middle load and host with heavy load. By defining TESA, VMs on lightly loaded host or VMs on heavily loaded host are migrated to another host with proper load; VMs on properly loaded host or VMs on middling loaded host are kept constant. Then, based on the TESA, five kinds of VM selection policies(minimization of migrations policy based on TESA(MIMT), maximization of migrations policy based on TESA(MAMT), highest potential growth policy based on TESA(HPGT), lowest potential growth policy based on TESA(LPGT) and random choice policy based on TESA(RCT)) are presented, and MIMT is chosen as the representative policy through experimental comparison. Finally, five research directions are put forward on future energy management. The results of simulation indicate that, as compared with single threshold(ST) algorithm and minimization of migrations(MM) algorithm, MIMT significantly improves the energy efficiency in data centers.展开更多
Cloud computing plays a significant role in Information Technology(IT)industry to deliver scalable resources as a service.One of the most important factor to increase the performance of the cloud server is maximizing t...Cloud computing plays a significant role in Information Technology(IT)industry to deliver scalable resources as a service.One of the most important factor to increase the performance of the cloud server is maximizing the resource utilization in task scheduling.The main advantage of this scheduling is to max-imize the performance and minimize the time loss.Various researchers examined numerous scheduling methods to achieve Quality of Service(QoS)and to reduce execution time.However,it had disadvantages in terms of low throughput and high response time.Hence,this study aimed to schedule the task efficiently and to eliminate the faults in scheduling the tasks to the Virtual Machines(VMs).For this purpose,the research proposed novel Particle Swarm Optimization-Bandwidth Aware divisible Task(PSO-BATS)scheduling with Multi-Layered Regression Host Employment(MLRHE)to sort out the issues of task scheduling and ease the scheduling operation by load balancing.The proposed efficient sche-duling provides benefits to both cloud users and servers.The performance evalua-tion is undertaken with respect to cost,Performance Improvement Rate(PIR)and makespan which revealed the efficiency of the proposed method.Additionally,comparative analysis is undertaken which confirmed the performance of the intro-duced system than conventional system for scheduling tasks with highflexibility.展开更多
文摘Cloud data centers face the largest energy consumption.In order to save energy consumption in cloud data centers,cloud service providers adopt a virtual machine migration strategy.In this paper,we propose an efficient virtual machine placement strategy(VMP-SI)based on virtual machine selection and integration.Our proposed VMP-SI strategy divides the migration process into three phases:physical host state detection,virtual machine selection and virtual machine placement.The local regression robust(LRR)algorithm and minimum migration time(MMT)policy are individual used in the first and section phase,respectively.Then we design a virtual machine migration strategy that integrates the process of virtual machine selection and placement,which can ensure a satisfactory utilization efficiency of the hardware resources of the active physical host.Experimental results show that our proposed method is better than the approach in Cloudsim under various performance metrics.
文摘The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource provisioning,but the necessitated constraints of rapid turnaround time,minimal execution cost,high rate of resource utilization and limited makespan transforms the Load Balancing(LB)process-based Task Scheduling(TS)problem into an NP-hard optimization issue.In this paper,Hybrid Prairie Dog and Beluga Whale Optimization Algorithm(HPDBWOA)is propounded for precise mapping of tasks to virtual machines with the due objective of addressing the dynamic nature of cloud environment.This capability of HPDBWOA helps in decreasing the SLA violations and Makespan with optimal resource management.It is modelled as a scheduling strategy which utilizes the merits of PDOA and BWOA for attaining reactive decisions making with respect to the process of assigning the tasks to virtual resources by considering their priorities into account.It addresses the problem of pre-convergence with wellbalanced exploration and exploitation to attain necessitated Quality of Service(QoS)for minimizing the waiting time incurred during TS process.It further balanced exploration and exploitation rates for reducing the makespan during the task allocation with complete awareness of VM state.The results of the proposed HPDBWOA confirmed minimized energy utilization of 32.18% and reduced cost of 28.94% better than approaches used for investigation.The statistical investigation of the proposed HPDBWOA conducted using ANOVA confirmed its efficacy over the benchmarked systems in terms of throughput,system,and response time.
基金supported by the National Natural Science Foundation of China(6120235461272422)the Scientific and Technological Support Project(Industry)of Jiangsu Province(BE2011189)
文摘Cloud computing represents a novel computing model in the contemporary technology world. In a cloud system, the com- puting power of virtual machines (VMs) and network status can greatly affect the completion time of data intensive tasks. How- ever, most of the current resource allocation policies focus only on network conditions and physical hosts. And the computing power of VMs is largely ignored. This paper proposes a comprehensive resource allocation policy which consists of a data intensive task scheduling algorithm that takes account of computing power of VMs and a VM allocation policy that considers bandwidth between storage nodes and hosts. The VM allocation policy includes VM placement and VM migration algorithms. Related simulations show that the proposed algorithms can greatly reduce the task comple- tion time and keep good load balance of physical hosts at the same time.
基金Project(61272148) supported by the National Natural Science Foundation of ChinaProject(20120162110061) supported by the Doctoral Programs of Ministry of Education of China+1 种基金Project(CX2014B066) supported by the Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2014zzts044) supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the energy consumption and(processor) resource utilization, is proposed. In TESA, according to load, hosts in data centers are divided into four classes, that is,host with light load, host with proper load, host with middle load and host with heavy load. By defining TESA, VMs on lightly loaded host or VMs on heavily loaded host are migrated to another host with proper load; VMs on properly loaded host or VMs on middling loaded host are kept constant. Then, based on the TESA, five kinds of VM selection policies(minimization of migrations policy based on TESA(MIMT), maximization of migrations policy based on TESA(MAMT), highest potential growth policy based on TESA(HPGT), lowest potential growth policy based on TESA(LPGT) and random choice policy based on TESA(RCT)) are presented, and MIMT is chosen as the representative policy through experimental comparison. Finally, five research directions are put forward on future energy management. The results of simulation indicate that, as compared with single threshold(ST) algorithm and minimization of migrations(MM) algorithm, MIMT significantly improves the energy efficiency in data centers.
文摘Cloud computing plays a significant role in Information Technology(IT)industry to deliver scalable resources as a service.One of the most important factor to increase the performance of the cloud server is maximizing the resource utilization in task scheduling.The main advantage of this scheduling is to max-imize the performance and minimize the time loss.Various researchers examined numerous scheduling methods to achieve Quality of Service(QoS)and to reduce execution time.However,it had disadvantages in terms of low throughput and high response time.Hence,this study aimed to schedule the task efficiently and to eliminate the faults in scheduling the tasks to the Virtual Machines(VMs).For this purpose,the research proposed novel Particle Swarm Optimization-Bandwidth Aware divisible Task(PSO-BATS)scheduling with Multi-Layered Regression Host Employment(MLRHE)to sort out the issues of task scheduling and ease the scheduling operation by load balancing.The proposed efficient sche-duling provides benefits to both cloud users and servers.The performance evalua-tion is undertaken with respect to cost,Performance Improvement Rate(PIR)and makespan which revealed the efficiency of the proposed method.Additionally,comparative analysis is undertaken which confirmed the performance of the intro-duced system than conventional system for scheduling tasks with highflexibility.