With the continuous development of network func-tions virtualization(NFV)and software-defined networking(SDN)technologies and the explosive growth of network traffic,the requirement for computing resources in the netw...With the continuous development of network func-tions virtualization(NFV)and software-defined networking(SDN)technologies and the explosive growth of network traffic,the requirement for computing resources in the network has risen sharply.Due to the high cost of edge computing resources,coordinating the cloud and edge computing resources to improve the utilization efficiency of edge computing resources is still a considerable challenge.In this paper,we focus on optimiz-ing the placement of network services in cloud-edge environ-ments to maximize the efficiency.It is first proved that,in cloud-edge environments,placing one service function chain(SFC)integrally in the cloud or at the edge can improve the utilization efficiency of edge resources.Then a virtual network function(VNF)performance-resource(P-R)function is proposed to repre-sent the relationship between the VNF instance computing per-formance and the allocated computing resource.To select the SFCs that are most suitable to deploy at the edge,a VNF place-ment and resource allocation model is built to configure each VNF with its particular P-R function.Moreover,a heuristic recur-sive algorithm is designed called the recursive algorithm for max edge throughput(RMET)to solve the model.Through simula-tions on two scenarios,it is verified that RMET can improve the utilization efficiency of edge computing resources.展开更多
Recently, integrating Softwaredefined networking(SDN) and network functions virtualization(NFV) are proposed to address the issue that difficulty and cost of hardwarebased and proprietary middleboxes management. Howev...Recently, integrating Softwaredefined networking(SDN) and network functions virtualization(NFV) are proposed to address the issue that difficulty and cost of hardwarebased and proprietary middleboxes management. However, it lacks of a framework that orchestrates network functions to service chain in the network cooperatively. In this paper, we propose a function combination framework that can dynamically adapt the network based on the integration NFV and SDN. There are two main contributions in this paper. First, the function combination framework based on the integration of SDN and NFV is proposed to address the function combination issue, including the architecture of Service Deliver Network, the port types representing traffic directions and the explanation of terms. Second, we formulate the issue of load balance of function combination as the model minimizing the standard deviations of all servers' loads and satisfying the demand of performance and limit of resource. The least busy placement algorithm is introduced to approach optimal solution of the problem. Finally, experimental results demonstrate that the proposed method can combine functions in an efficient and scalable way and ensure the load balance of the network.展开更多
With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)sat...With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)satellite networks.While due to the scarcity of bandwidth resources and dynamic topology of LEO satellites,the static SFC placement schemes may cause performance degradation,resource waste and even service failure.In this paper,we consider migration and establish an online migration model,especially considering the dynamic topology.Given the scarcity of bandwidth resources,the model aims to maximize the total number of accepted SFCs while incurring as little bandwidth cost of SFC transmission and migration as possible.Due to its NP-hardness,we propose a heuristic minimized dynamic SFC migration(MDSM)algorithm that only triggers the migration procedure when new SFCs are rejected.Simulation results demonstrate that MDSM achieves a performance close to the upper bound with lower complexity.展开更多
针对服务功能链(SFC)部署过程中存在虚拟网络功能(VNF)实例部署成本和转发路径成本难以权衡的问题,提出了基于VNF实例共享的SFC部署算法。首先针对多链SFC建立VNF和虚拟链路映射模型,并预估路径部署长度上限,保证SFC时延需求;其次,在路...针对服务功能链(SFC)部署过程中存在虚拟网络功能(VNF)实例部署成本和转发路径成本难以权衡的问题,提出了基于VNF实例共享的SFC部署算法。首先针对多链SFC建立VNF和虚拟链路映射模型,并预估路径部署长度上限,保证SFC时延需求;其次,在路径部署长度限制范围内,尽可能使VNF实例共享最大化,以平衡链路转发成本和VNF部署成本,最终得到SFC部署策略。与已有的SPH(shortest path heuristic)和GUS(greedy on used server)部署算法相比,所提算法所得的总运营成本分别降低6.6%和12.15%,且当SFC数量增多时,该算法的服务接受率可达89.33%。仿真实验结果表明,提出算法可以在保证用户服务质量的同时有效降低SFC部署成本。展开更多
文章详细探讨了虚拟化网络资源管理与优化的关键方法和技术。首先,综述虚拟化网络资源管理的基础概念,包括虚拟网络功能(Virtual Network Function,VNF)、软件定义网络(Software Defined Networking,SDN)以及网络隔离技术的实现原理和...文章详细探讨了虚拟化网络资源管理与优化的关键方法和技术。首先,综述虚拟化网络资源管理的基础概念,包括虚拟网络功能(Virtual Network Function,VNF)、软件定义网络(Software Defined Networking,SDN)以及网络隔离技术的实现原理和应用。其次,深入分析如何利用这些技术进行自动化配置与资源调度,以提升网络资源的使用效率和可靠性。最后,文章提出一系列策略,包括负载均衡、资源分配优化、快速恢复技术以及安全增强措施,旨在提升虚拟化网络环境中的资源利用效率和系统的可靠性。通过对虚拟化技术及核心应用的深入探讨,为云计算环境中的网络资源管理提供了实践指导和理论支持。展开更多
基金This work was supported by the Key Research and Development(R&D)Plan of Heilongjiang Province of China(JD22A001).
文摘With the continuous development of network func-tions virtualization(NFV)and software-defined networking(SDN)technologies and the explosive growth of network traffic,the requirement for computing resources in the network has risen sharply.Due to the high cost of edge computing resources,coordinating the cloud and edge computing resources to improve the utilization efficiency of edge computing resources is still a considerable challenge.In this paper,we focus on optimiz-ing the placement of network services in cloud-edge environ-ments to maximize the efficiency.It is first proved that,in cloud-edge environments,placing one service function chain(SFC)integrally in the cloud or at the edge can improve the utilization efficiency of edge resources.Then a virtual network function(VNF)performance-resource(P-R)function is proposed to repre-sent the relationship between the VNF instance computing per-formance and the allocated computing resource.To select the SFCs that are most suitable to deploy at the edge,a VNF place-ment and resource allocation model is built to configure each VNF with its particular P-R function.Moreover,a heuristic recur-sive algorithm is designed called the recursive algorithm for max edge throughput(RMET)to solve the model.Through simula-tions on two scenarios,it is verified that RMET can improve the utilization efficiency of edge computing resources.
基金supported by the Foundation for Innovative Research Groups of the National Science Foundation of China (Grant No.61521003)The National Basic Research Program of China(973)(Grant No.2012CB315901,2013CB329104)+1 种基金The National Natural Science Foundation of China(Grant No.61372121,61309019,61309020)The National High Technology Research and Development Program of China(863)(Grant No.2015AA016102,2013AA013505)
文摘Recently, integrating Softwaredefined networking(SDN) and network functions virtualization(NFV) are proposed to address the issue that difficulty and cost of hardwarebased and proprietary middleboxes management. However, it lacks of a framework that orchestrates network functions to service chain in the network cooperatively. In this paper, we propose a function combination framework that can dynamically adapt the network based on the integration NFV and SDN. There are two main contributions in this paper. First, the function combination framework based on the integration of SDN and NFV is proposed to address the function combination issue, including the architecture of Service Deliver Network, the port types representing traffic directions and the explanation of terms. Second, we formulate the issue of load balance of function combination as the model minimizing the standard deviations of all servers' loads and satisfying the demand of performance and limit of resource. The least busy placement algorithm is introduced to approach optimal solution of the problem. Finally, experimental results demonstrate that the proposed method can combine functions in an efficient and scalable way and ensure the load balance of the network.
基金supported in part by the National Natural Science Foundation of China(NSFC)under grant numbers U22A2007 and 62171010the Open project of Satellite Internet Key Laboratory in 2022(Project 3:Research on Spaceborne Lightweight Core Network and Intelligent Collaboration)the Beijing Natural Science Foundation under grant number L212003.
文摘With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)satellite networks.While due to the scarcity of bandwidth resources and dynamic topology of LEO satellites,the static SFC placement schemes may cause performance degradation,resource waste and even service failure.In this paper,we consider migration and establish an online migration model,especially considering the dynamic topology.Given the scarcity of bandwidth resources,the model aims to maximize the total number of accepted SFCs while incurring as little bandwidth cost of SFC transmission and migration as possible.Due to its NP-hardness,we propose a heuristic minimized dynamic SFC migration(MDSM)algorithm that only triggers the migration procedure when new SFCs are rejected.Simulation results demonstrate that MDSM achieves a performance close to the upper bound with lower complexity.
文摘针对服务功能链(SFC)部署过程中存在虚拟网络功能(VNF)实例部署成本和转发路径成本难以权衡的问题,提出了基于VNF实例共享的SFC部署算法。首先针对多链SFC建立VNF和虚拟链路映射模型,并预估路径部署长度上限,保证SFC时延需求;其次,在路径部署长度限制范围内,尽可能使VNF实例共享最大化,以平衡链路转发成本和VNF部署成本,最终得到SFC部署策略。与已有的SPH(shortest path heuristic)和GUS(greedy on used server)部署算法相比,所提算法所得的总运营成本分别降低6.6%和12.15%,且当SFC数量增多时,该算法的服务接受率可达89.33%。仿真实验结果表明,提出算法可以在保证用户服务质量的同时有效降低SFC部署成本。
文摘文章详细探讨了虚拟化网络资源管理与优化的关键方法和技术。首先,综述虚拟化网络资源管理的基础概念,包括虚拟网络功能(Virtual Network Function,VNF)、软件定义网络(Software Defined Networking,SDN)以及网络隔离技术的实现原理和应用。其次,深入分析如何利用这些技术进行自动化配置与资源调度,以提升网络资源的使用效率和可靠性。最后,文章提出一系列策略,包括负载均衡、资源分配优化、快速恢复技术以及安全增强措施,旨在提升虚拟化网络环境中的资源利用效率和系统的可靠性。通过对虚拟化技术及核心应用的深入探讨,为云计算环境中的网络资源管理提供了实践指导和理论支持。