This study focuses on a virtual synchronous machine(VSM) based on voltage source converters to mimic the behavior of synchronous machines(SMs) and improve the damping ratio of the power system. The VSM model is simpli...This study focuses on a virtual synchronous machine(VSM) based on voltage source converters to mimic the behavior of synchronous machines(SMs) and improve the damping ratio of the power system. The VSM model is simplified according to some assumptions(neglecting the speed variation and the stator transients) to allow for the possibility of dealing with low-frequency oscillation in large-scale systems with many VSMs. Furthermore, a virtual power system stabilizer(VPSS) structure is proposed and tuned using a method based on a linearized power system dynamic model. The linear and nonlinear analyses examine the stability of two modified versions of a 16-machine power system in which, in the first case, partial classical machines are replaced by VSMs, and in the second case, all SMs are replaced by VSMs. The simulation results of the case studies validate the efficiency of the proposed control strategy.展开更多
The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance a...The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance as the generator.It is the key technology to realize new energy grid connections’stable and reliable operation.This project studies a dynamic simulation model of an extensive new energy power system based on the virtual synchronous motor.A new energy storage method is proposed.The mathematical energy storage model is established by combining the fixed rotor model of a synchronous virtual machine with the charge-discharge power,state of charge,operation efficiency,dead zone,and inverter constraint.The rapid conversion of energy storage devices absorbs the excess instantaneous kinetic energy caused by interference.The branch transient of the critical cut set in the system can be confined to a limited area.Thus,the virtual synchronizer’s kinetic and potential energy can be efficiently converted into an instantaneous state.The simulation of power system analysis software package(PSASP)verifies the correctness of the theory and algorithm in this paper.This paper provides a theoretical basis for improving the transient stability of new energy-connected power grids.展开更多
Grid-forming(GFM)converters can provide inertia support for power grids through control technology,stabilize voltage and frequency,and improve system stability,unlike traditional grid-following(GFL)converters.Therefor...Grid-forming(GFM)converters can provide inertia support for power grids through control technology,stabilize voltage and frequency,and improve system stability,unlike traditional grid-following(GFL)converters.Therefore,in future“double high”power systems,research on the control technology of GFM converters will become an urgent demand.In this paper,we first introduce the basic principle of GFM control and then present five currently used control strategies for GFM converters:droop control,power synchronization control(PSC),virtual synchronous machine control(VSM),direct power control(DPC),and virtual oscillator control(VOC).These five strategies can independently establish voltage phasors to provide inertia to the system.Among these,droop control is the most widely used strategy.PSC and VSM are strategies that simulate the mechanical characteristics of synchronous generators;thus,they are more accurate than droop control.DPC regulates the active power and reactive power directly,with no inner current controller,and VOC is a novel method under study using an oscillator circuit to realize synchronization.Finally,we highlight key technologies and research directions to be addressed in the future.展开更多
Renewable energy is connected to the grid through the inverter,which in turn reduces the inertia and stability of the power grid itself.The traditional grid-connected inverter does not have the function of voltage reg...Renewable energy is connected to the grid through the inverter,which in turn reduces the inertia and stability of the power grid itself.The traditional grid-connected inverter does not have the function of voltage regulation and frequency regulation and can therefore no longer adapt to the new development.The virtual synchronous generator(VSG)has the function of voltage regulation and frequency regulation,which has more prominent advantages than traditional inverters.Based on the principle of VSG,the relationship between the frequency characteristics and the energy storage capacity of the feedforward branch-based virtual synchronous machine(FVSG)is derived when the input power and grid frequency change.Reveal the relationship between the virtual inertia coefficient,damping coefficient,and frequency characteristics of VSG and energy storage capacity.An energy storage configuration method that meets the requirements of frequency variation characteristics is proposed.A mathematical model is established,and the Matlab/Simulink simulation software is used for modeling.The simulation results verify the relationship between the inertia coefficient,damping coefficient,and energy storage demand of the FVSG.展开更多
文摘This study focuses on a virtual synchronous machine(VSM) based on voltage source converters to mimic the behavior of synchronous machines(SMs) and improve the damping ratio of the power system. The VSM model is simplified according to some assumptions(neglecting the speed variation and the stator transients) to allow for the possibility of dealing with low-frequency oscillation in large-scale systems with many VSMs. Furthermore, a virtual power system stabilizer(VPSS) structure is proposed and tuned using a method based on a linearized power system dynamic model. The linear and nonlinear analyses examine the stability of two modified versions of a 16-machine power system in which, in the first case, partial classical machines are replaced by VSMs, and in the second case, all SMs are replaced by VSMs. The simulation results of the case studies validate the efficiency of the proposed control strategy.
文摘The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance as the generator.It is the key technology to realize new energy grid connections’stable and reliable operation.This project studies a dynamic simulation model of an extensive new energy power system based on the virtual synchronous motor.A new energy storage method is proposed.The mathematical energy storage model is established by combining the fixed rotor model of a synchronous virtual machine with the charge-discharge power,state of charge,operation efficiency,dead zone,and inverter constraint.The rapid conversion of energy storage devices absorbs the excess instantaneous kinetic energy caused by interference.The branch transient of the critical cut set in the system can be confined to a limited area.Thus,the virtual synchronizer’s kinetic and potential energy can be efficiently converted into an instantaneous state.The simulation of power system analysis software package(PSASP)verifies the correctness of the theory and algorithm in this paper.This paper provides a theoretical basis for improving the transient stability of new energy-connected power grids.
基金supported by the National Natural Science Foundation of China(No.52177122)the“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA 21050100)the Youth Innovation Promotion Association CAS(No.2018170)。
文摘Grid-forming(GFM)converters can provide inertia support for power grids through control technology,stabilize voltage and frequency,and improve system stability,unlike traditional grid-following(GFL)converters.Therefore,in future“double high”power systems,research on the control technology of GFM converters will become an urgent demand.In this paper,we first introduce the basic principle of GFM control and then present five currently used control strategies for GFM converters:droop control,power synchronization control(PSC),virtual synchronous machine control(VSM),direct power control(DPC),and virtual oscillator control(VOC).These five strategies can independently establish voltage phasors to provide inertia to the system.Among these,droop control is the most widely used strategy.PSC and VSM are strategies that simulate the mechanical characteristics of synchronous generators;thus,they are more accurate than droop control.DPC regulates the active power and reactive power directly,with no inner current controller,and VOC is a novel method under study using an oscillator circuit to realize synchronization.Finally,we highlight key technologies and research directions to be addressed in the future.
基金National Key Research and Development Plan Project(2017YFB1201003-20)Quality Inspection,Monitoring and Operation and Maintenance Guarantee Technology of New Power Supply SystemVehicles for UrbanRail Transit and Their on-Board Energy Storage Technology.
文摘Renewable energy is connected to the grid through the inverter,which in turn reduces the inertia and stability of the power grid itself.The traditional grid-connected inverter does not have the function of voltage regulation and frequency regulation and can therefore no longer adapt to the new development.The virtual synchronous generator(VSG)has the function of voltage regulation and frequency regulation,which has more prominent advantages than traditional inverters.Based on the principle of VSG,the relationship between the frequency characteristics and the energy storage capacity of the feedforward branch-based virtual synchronous machine(FVSG)is derived when the input power and grid frequency change.Reveal the relationship between the virtual inertia coefficient,damping coefficient,and frequency characteristics of VSG and energy storage capacity.An energy storage configuration method that meets the requirements of frequency variation characteristics is proposed.A mathematical model is established,and the Matlab/Simulink simulation software is used for modeling.The simulation results verify the relationship between the inertia coefficient,damping coefficient,and energy storage demand of the FVSG.