In this paper, a novel method is proposed to address the problem of designing virtual topology over wavelength division multiplexing (WDM) networks under bandwidth demand uncertainties. And a bandwidth demand model ...In this paper, a novel method is proposed to address the problem of designing virtual topology over wavelength division multiplexing (WDM) networks under bandwidth demand uncertainties. And a bandwidth demand model under uncertainties is presented. The optimization goal of virtual topology design is defined as minimizing the maximum value amongp percentiles of the bandwidth demand distribution on all Hght-paths. Correspondingly, we propose a heuristic algorithm called an improved decreasing multi-hop logical topology design algorithm (ID-MLTDA) that involves with a degree of uncertainties to design virtual topology. The proposed algorithm yields better performance than previous algorithms. Additionally, the simplicity and efficiency of the proposed algorithm can be in favor of the feasibility for topology design of large networks.展开更多
This paper presents partially asynchronous parallel simulation of continuous-system (PAPSoCS) and some approaches to the issues of its implementation on a multicomputer system. To guarantee the simulation results cor...This paper presents partially asynchronous parallel simulation of continuous-system (PAPSoCS) and some approaches to the issues of its implementation on a multicomputer system. To guarantee the simulation results correct and speedup the simulation, the scheme for efficient PAPSoCS is proposed and the virtual topology star is constructed to match the path of message passing for solving algorithm-architecture adequation problem. Under the circumstances that messages frequently passed inter-processor are much shorter, typically within several 4 bytes, asynchronous communication mode is employed to reduce the communication ratio. Experiment results show that asynchronous parallel simulation has much higher efficiency than its synchronous counterpart.展开更多
An operational backbone network is connected with many routers and other devices. Identifying faults in the network is very difficult, so a fault localization mechanism is necessary to identify fault and alleviate it ...An operational backbone network is connected with many routers and other devices. Identifying faults in the network is very difficult, so a fault localization mechanism is necessary to identify fault and alleviate it and correct the faults in order to reduce the network performance degradation. A risk model needs to be devised based on the dynamic database by creating alternate path and the network is reconfigured by identifying dynamic paths. In this paper, an on-demand link state routing approach is used for handling failures in IP backbone networks and a localization algorithm is used to improve QOS parameters based on threshold value of gateway. It is proved that on-demand link state routing guarantees loop-free forwarding to reachable destinations regardless of the number of failures in the network, and in case of localization algorithm using modification process packet loss is avoided based on threshold value of gateway. Heuristic algorithm is also used for reconfiguration of dynamic path for effective fault localization. In this paper, in order to change the traffic condition, reconfiguration strategic is dynamically used. Dijikstra’s shortest path algorithm has been used to determine the shortest path between node pairs. Using risk modeling mechanism, a small set of candidate faults is identified. The concept of Fault Localization is used to minimize the fault occurring in the node and sends original path to node pairs. The localization algorithm based on MODIFICATION PROCESS, packet loss is avoided in the network by checking threshold value of gateway. If the threshold value is maximum, router directly forwards the packet to destination through gateway and if the threshold value is minimum, router compresses the packet and forwards the packet to destination with notification via gateway.展开更多
Satellite networks have many advantages over traditional terrestrial networks.However,it is very difficult to design a satellite network with excellent performance.The paper briefly summarizes some existing satellite ...Satellite networks have many advantages over traditional terrestrial networks.However,it is very difficult to design a satellite network with excellent performance.The paper briefly summarizes some existing satellite network routing technologies from the perspective of both single-layer and multilayer satellite constellations,and focuses on the main ideas,characteristics,and existing problems of these routing technologies.For single-layer satellite networks,two routing strategies are discussed,virtual node strategy and virtual topology strategy.Moreover,considering the deficiency of existing multilayer satellite network routing,we discuss the topic invulnerability.Finally,the challenges and problems faced by the satellite network are analyzed and the trend of future development is predicted.展开更多
基金Supported by the National Natural Science Foundation of China (No.90604002)Program for New Century Excellent Talents in University (No. 05-0807).
文摘In this paper, a novel method is proposed to address the problem of designing virtual topology over wavelength division multiplexing (WDM) networks under bandwidth demand uncertainties. And a bandwidth demand model under uncertainties is presented. The optimization goal of virtual topology design is defined as minimizing the maximum value amongp percentiles of the bandwidth demand distribution on all Hght-paths. Correspondingly, we propose a heuristic algorithm called an improved decreasing multi-hop logical topology design algorithm (ID-MLTDA) that involves with a degree of uncertainties to design virtual topology. The proposed algorithm yields better performance than previous algorithms. Additionally, the simplicity and efficiency of the proposed algorithm can be in favor of the feasibility for topology design of large networks.
文摘This paper presents partially asynchronous parallel simulation of continuous-system (PAPSoCS) and some approaches to the issues of its implementation on a multicomputer system. To guarantee the simulation results correct and speedup the simulation, the scheme for efficient PAPSoCS is proposed and the virtual topology star is constructed to match the path of message passing for solving algorithm-architecture adequation problem. Under the circumstances that messages frequently passed inter-processor are much shorter, typically within several 4 bytes, asynchronous communication mode is employed to reduce the communication ratio. Experiment results show that asynchronous parallel simulation has much higher efficiency than its synchronous counterpart.
文摘An operational backbone network is connected with many routers and other devices. Identifying faults in the network is very difficult, so a fault localization mechanism is necessary to identify fault and alleviate it and correct the faults in order to reduce the network performance degradation. A risk model needs to be devised based on the dynamic database by creating alternate path and the network is reconfigured by identifying dynamic paths. In this paper, an on-demand link state routing approach is used for handling failures in IP backbone networks and a localization algorithm is used to improve QOS parameters based on threshold value of gateway. It is proved that on-demand link state routing guarantees loop-free forwarding to reachable destinations regardless of the number of failures in the network, and in case of localization algorithm using modification process packet loss is avoided based on threshold value of gateway. Heuristic algorithm is also used for reconfiguration of dynamic path for effective fault localization. In this paper, in order to change the traffic condition, reconfiguration strategic is dynamically used. Dijikstra’s shortest path algorithm has been used to determine the shortest path between node pairs. Using risk modeling mechanism, a small set of candidate faults is identified. The concept of Fault Localization is used to minimize the fault occurring in the node and sends original path to node pairs. The localization algorithm based on MODIFICATION PROCESS, packet loss is avoided in the network by checking threshold value of gateway. If the threshold value is maximum, router directly forwards the packet to destination through gateway and if the threshold value is minimum, router compresses the packet and forwards the packet to destination with notification via gateway.
基金This work is supported by the National Natural Science Foundation of China(Nos.61572435,61472305,61473222)the Natural Science Foundation of Shaanxi Province(Nos.2015JZ002,2015JM6311)+1 种基金the Natural Science Foundation of Zhejiang Province(No.LZ16F020001)Programs Supported by Ningbo Natural Science Foundation(No.2016A610035).
文摘Satellite networks have many advantages over traditional terrestrial networks.However,it is very difficult to design a satellite network with excellent performance.The paper briefly summarizes some existing satellite network routing technologies from the perspective of both single-layer and multilayer satellite constellations,and focuses on the main ideas,characteristics,and existing problems of these routing technologies.For single-layer satellite networks,two routing strategies are discussed,virtual node strategy and virtual topology strategy.Moreover,considering the deficiency of existing multilayer satellite network routing,we discuss the topic invulnerability.Finally,the challenges and problems faced by the satellite network are analyzed and the trend of future development is predicted.