目的构建一种基于人工智能大语言模型(large language model,LLM)技术、可用于医学教育的新型虚拟患者(virtual patient,VP)系统,评价该系统在基层医生进修学习全科医学临床思维中的应用效果。方法选取2021年1月至2024年2月在东南大学...目的构建一种基于人工智能大语言模型(large language model,LLM)技术、可用于医学教育的新型虚拟患者(virtual patient,VP)系统,评价该系统在基层医生进修学习全科医学临床思维中的应用效果。方法选取2021年1月至2024年2月在东南大学附属中大医院进修的基层社区医生为研究对象,随机分为试验组和对照组,分别采用基于LLM的VP系统教学、传统教学方法进行授课,通过临床思维理论知识考核、临床思维能力考核、课程满意度调查评估教学效果,并对结果进行相应的统计学分析。结果共纳入124名基层社区医生,其中试验组60例、对照组64例,两组在一般基线资料上差异无统计学意义,具有可比性。课程结束后,试验组临床思维理论知识考核成绩显著高于对照组(83.83±3.15 vs.79.92±4.52,P<0.01),且不及格率显著低于对照组(0.00%vs.9.38%,P<0.05);试验组在临床思维能力3个维度(批判性、系统性、循证思维)方面教学后分数均显著高于教学前,而对照组仅在批判性思维维度上教学前后差异有统计学意义;教学后试验组在系统思维、循证思维方面分数均显著高于对照组(P<0.05),但在批判性思维上两组分数差异无统计学意义。试验组对授课的总体满意度也显著高于对照组(93.33%vs.85.48%,P<0.05)。结论基于LLM的VP系统提升了学员对临床思维理论知识的掌握程度,也促进了其临床思维能力的培养,该教学方法可为其他医学教育群体提供新的教学工具和思路。展开更多
This is an attempt to explain mRNA-dependent non-stationary semantic values of codons (triplets) and nucleotides (letters) in codon composition during protein biosynthesis. This explanation is realized by comparing th...This is an attempt to explain mRNA-dependent non-stationary semantic values of codons (triplets) and nucleotides (letters) in codon composition during protein biosynthesis. This explanation is realized by comparing the different protein codes of various biosystem taxa, and, comparing mitochondrial code with the standard code. An initial mRNA transcriptional virtuality (Virtual-Reality) is transformed into material reality at the level of translation of virtual triplets into real (material) amino acids or into a real stop command of protein biosynthesis. The transformation of virtuality into reality occurs de facto when the linguistic sign1 functions of the codon syhoms are realized in the 3’ nucleotide (wobbling nucleotide according to F. Crick) in the process of protein biosynthesis. This corresponds to the theoretical works of the authors of this article. Despite the illusory appearance of semantic arbitrariness during the operation of ribosomes in the mode of codon semantic non-stationarity, this phenomenon probably provides biosystems with an unusually high level of adaptability to changes in the external environment as well as to internal (mental) dynamics of neuron’s genome in the cerebral cortex. The genome’s non-stationarity properties at the nucleotide, codon, gene and mental levels have fractal structure and corresponding dimensions. The highest form of such fractality (with maximum dimension) is probably realized in the genomic continuum of neurons in the human cerebral cortex through this semantic Virtual-to-Real (VR) codon transcoding with the biosynthesis of short-living semantic proteins, as the equivalents of material thinking-consciousness. In fact, this is the language of the brain’s genome, that is, our own language. In this case, the same thing happens in natural, primarily mental (non-verbal) languages. Their materialization is recorded in vocables (sounding words) and in writing. Such writing is the amino acid sequence in the semantic proteins of the human cerebral cortex. Rapidly decaying, such proteins can leave a long-lasting “so-called” Schrödinger wave holographic memory in the cerebral cortex. The presented below study is purely theoretical and based on a logical approach. The topic of the study is very complex and is subject to further development.展开更多
文摘目的构建一种基于人工智能大语言模型(large language model,LLM)技术、可用于医学教育的新型虚拟患者(virtual patient,VP)系统,评价该系统在基层医生进修学习全科医学临床思维中的应用效果。方法选取2021年1月至2024年2月在东南大学附属中大医院进修的基层社区医生为研究对象,随机分为试验组和对照组,分别采用基于LLM的VP系统教学、传统教学方法进行授课,通过临床思维理论知识考核、临床思维能力考核、课程满意度调查评估教学效果,并对结果进行相应的统计学分析。结果共纳入124名基层社区医生,其中试验组60例、对照组64例,两组在一般基线资料上差异无统计学意义,具有可比性。课程结束后,试验组临床思维理论知识考核成绩显著高于对照组(83.83±3.15 vs.79.92±4.52,P<0.01),且不及格率显著低于对照组(0.00%vs.9.38%,P<0.05);试验组在临床思维能力3个维度(批判性、系统性、循证思维)方面教学后分数均显著高于教学前,而对照组仅在批判性思维维度上教学前后差异有统计学意义;教学后试验组在系统思维、循证思维方面分数均显著高于对照组(P<0.05),但在批判性思维上两组分数差异无统计学意义。试验组对授课的总体满意度也显著高于对照组(93.33%vs.85.48%,P<0.05)。结论基于LLM的VP系统提升了学员对临床思维理论知识的掌握程度,也促进了其临床思维能力的培养,该教学方法可为其他医学教育群体提供新的教学工具和思路。
文摘This is an attempt to explain mRNA-dependent non-stationary semantic values of codons (triplets) and nucleotides (letters) in codon composition during protein biosynthesis. This explanation is realized by comparing the different protein codes of various biosystem taxa, and, comparing mitochondrial code with the standard code. An initial mRNA transcriptional virtuality (Virtual-Reality) is transformed into material reality at the level of translation of virtual triplets into real (material) amino acids or into a real stop command of protein biosynthesis. The transformation of virtuality into reality occurs de facto when the linguistic sign1 functions of the codon syhoms are realized in the 3’ nucleotide (wobbling nucleotide according to F. Crick) in the process of protein biosynthesis. This corresponds to the theoretical works of the authors of this article. Despite the illusory appearance of semantic arbitrariness during the operation of ribosomes in the mode of codon semantic non-stationarity, this phenomenon probably provides biosystems with an unusually high level of adaptability to changes in the external environment as well as to internal (mental) dynamics of neuron’s genome in the cerebral cortex. The genome’s non-stationarity properties at the nucleotide, codon, gene and mental levels have fractal structure and corresponding dimensions. The highest form of such fractality (with maximum dimension) is probably realized in the genomic continuum of neurons in the human cerebral cortex through this semantic Virtual-to-Real (VR) codon transcoding with the biosynthesis of short-living semantic proteins, as the equivalents of material thinking-consciousness. In fact, this is the language of the brain’s genome, that is, our own language. In this case, the same thing happens in natural, primarily mental (non-verbal) languages. Their materialization is recorded in vocables (sounding words) and in writing. Such writing is the amino acid sequence in the semantic proteins of the human cerebral cortex. Rapidly decaying, such proteins can leave a long-lasting “so-called” Schrödinger wave holographic memory in the cerebral cortex. The presented below study is purely theoretical and based on a logical approach. The topic of the study is very complex and is subject to further development.