The influence of the virtual guard ring width(GRW)on the performance of the p-well/deep n-well single-photon avalanche diode(SPAD)in a 180 nm standard CMOS process was investigated.TCAD simulation demonstrates that th...The influence of the virtual guard ring width(GRW)on the performance of the p-well/deep n-well single-photon avalanche diode(SPAD)in a 180 nm standard CMOS process was investigated.TCAD simulation demonstrates that the electric field strength and current density in the guard ring are obviously enhanced when GRW is decreased to 1μm.It is experimentally found that,compared with an SPAD with GRW=2μm,the dark count rate(DCR)and afterpulsing probability(AP)of the SPAD with GRW=1μm is significantly increased by 2.7 times and twofold,respectively,meanwhile,its photon detection probability(PDP)is saturated and hard to be promoted at over 2 V excess bias voltage.Although the fill factor(FF)can be enlarged by reducing GRW,the dark noise of devices is negatively affected due to the enhanced trap-assisted tunneling(TAT)effect in the 1μm guard ring region.By comparison,the SPAD with GRW=2μm can achieve a better trade-off between the FF and noise performance.Our study provides a design guideline for guard rings to realize a low-noise SPAD for large-array applications.展开更多
Pipes inevitably encounter high ambient pressure and bending moment during the deepwater pipe-laying process,which can lead to elliptical buckling and even deterioration failure.For the safety of pipe-laying operation...Pipes inevitably encounter high ambient pressure and bending moment during the deepwater pipe-laying process,which can lead to elliptical buckling and even deterioration failure.For the safety of pipe-laying operation,available formulas for the pipe stability are established on the basis of the assumption of uniform deformation along the tube length and symmetrical buckling.This method can predict the nonlinear response of elliptical collapse of steel circular tubes for different ratios of diameter to thickness(D/t)under pure bending or combined bending and external pressure.In these formulas,the strain-displacement relationship is deduced from the nonlinear ring theory,and the Ramberg-Osgood constitutive model is applied to simulate the inelastic material behavior.Meanwhile,the principle of virtual work is adopted to derive the equilibrium equations.A set of equations is solved by the Newton-Raphson method,and the iterative scheme contains nested iteration for the constitutive relation.In order to check the effectiveness of this theoretical method,illustrative examples are presented in this paper.Besides,the numerical simulation is carried out by use of ANSYS.A comparison of the results shows that the theoretical method can provide reasonable prediction for engineering practice.展开更多
基金supported by the Jiangsu Agricultural Science and Technology Innovation Fund of China(No.CX(21)3062)the National Natural Science Foundation of China(No.62171233).
文摘The influence of the virtual guard ring width(GRW)on the performance of the p-well/deep n-well single-photon avalanche diode(SPAD)in a 180 nm standard CMOS process was investigated.TCAD simulation demonstrates that the electric field strength and current density in the guard ring are obviously enhanced when GRW is decreased to 1μm.It is experimentally found that,compared with an SPAD with GRW=2μm,the dark count rate(DCR)and afterpulsing probability(AP)of the SPAD with GRW=1μm is significantly increased by 2.7 times and twofold,respectively,meanwhile,its photon detection probability(PDP)is saturated and hard to be promoted at over 2 V excess bias voltage.Although the fill factor(FF)can be enlarged by reducing GRW,the dark noise of devices is negatively affected due to the enhanced trap-assisted tunneling(TAT)effect in the 1μm guard ring region.By comparison,the SPAD with GRW=2μm can achieve a better trade-off between the FF and noise performance.Our study provides a design guideline for guard rings to realize a low-noise SPAD for large-array applications.
基金supported by the National High Technology Research and Development Programof China(863 Program,Grant No.2006AA09A105)
文摘Pipes inevitably encounter high ambient pressure and bending moment during the deepwater pipe-laying process,which can lead to elliptical buckling and even deterioration failure.For the safety of pipe-laying operation,available formulas for the pipe stability are established on the basis of the assumption of uniform deformation along the tube length and symmetrical buckling.This method can predict the nonlinear response of elliptical collapse of steel circular tubes for different ratios of diameter to thickness(D/t)under pure bending or combined bending and external pressure.In these formulas,the strain-displacement relationship is deduced from the nonlinear ring theory,and the Ramberg-Osgood constitutive model is applied to simulate the inelastic material behavior.Meanwhile,the principle of virtual work is adopted to derive the equilibrium equations.A set of equations is solved by the Newton-Raphson method,and the iterative scheme contains nested iteration for the constitutive relation.In order to check the effectiveness of this theoretical method,illustrative examples are presented in this paper.Besides,the numerical simulation is carried out by use of ANSYS.A comparison of the results shows that the theoretical method can provide reasonable prediction for engineering practice.
文摘为了给热辐射方向性研究提供准确的组分温度分布和方向亮温数据,提出了一种新的基于热像仪的实用测量方法.该算法包括2个部分:1)采用“热像仪-定面积法”的改进方法“虚拟圈”结合“交叉点法”自动提取植被冠层方向亮度温度,并进行时间效应纠正;2)在假设发射率已知的条件下,利用“开放度”的概念去除多次散射和天空下行辐射的影响,给出更精确的组分温度分布信息.采用2006年4月20日北京小汤山小麦地的测量数据进行了初步分析.获取的方向亮温可以较好地反映地表热辐射方向性规律,热动力学温度提取误差均值小于1 K.