期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Virtual sensing for gearbox condition monitoring based on kernel factor analysis 被引量:1
1
作者 Jin-Jiang Wang Ying-Hao Zheng +2 位作者 Lai-Bin Zhang Li-Xiang Duan Rui Zhao 《Petroleum Science》 SCIE CAS CSCD 2017年第3期539-548,共10页
Vibration and oil debris analysis are widely used in gearbox condition monitoring as the typical indirect and direct sensing techniques. However, they have their own advantages and disadvantages. To better utilize the... Vibration and oil debris analysis are widely used in gearbox condition monitoring as the typical indirect and direct sensing techniques. However, they have their own advantages and disadvantages. To better utilize the sensing information and overcome its shortcomings, this paper presents a virtual sensing technique based on artificial intelligence by fusing low-cost online vibration measurements to derive a gearbox condition indictor, and its performance is comparable to the costly offline oil debris measurements. Firstly, the representative features are extracted from the noisy vibration measurements to characterize the gearbox degradation conditions. However, the extracted features of high dimensionality present nonlinearity and uncertainty in the machinery degradation process. A new nonlinear feature selection and fusion method,named kernel factor analysis, is proposed to mitigate the aforementioned challenge. Then the virtual sensing model is constructed by incorporating the fused vibration features and offline oil debris measurements based on support vector regression. The developed virtual sensing technique is experimentally evaluated in spiral bevel gear wear tests,and the results show that the developed kernel factor analysis method outperforms the state-of-the-art featureselection techniques in terms of virtual sensing model accuracy. 展开更多
关键词 Gearbox condition monitoring virtualsensing Feature selection and fusion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部