期刊文献+
共找到87,722篇文章
< 1 2 250 >
每页显示 20 50 100
Visco-elastic fluid flow past an infinite vertical porous plate in the presence of first-order chemical reaction
1
作者 R.A.DAMSEH B.A.SHANNAK 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第8期955-962,共8页
An analysis has been developed to study the unsteady free convection flow of an incompressible visco-elastic fluid on a continuously moving vertical porous plate in the presence of a first-order chemical reaction. The... An analysis has been developed to study the unsteady free convection flow of an incompressible visco-elastic fluid on a continuously moving vertical porous plate in the presence of a first-order chemical reaction. The governing equations are solved numerically using an implicit finite difference technique. The obtained numerical solutions are compared with the analytical solutions. The velocity profiles are presented. A parametric analysis is performed to illustrate the influences of the visco-elastic parameter, the dimensionless chemical reaction parameter, and the plate moving velocity on the steady state velocity profiles, the time dependent friction coefficient, the Nusselt number, and the Sherwood number. 展开更多
关键词 visco-elastic fluid porous plate chemical reaction free convection
下载PDF
Heat and Mass Transfer in Visco-Elastic Fluid through Rotating Porous Channel with Hall Effect
2
作者 Pradip Kumar Gaur Abhay Kumar Jha 《Open Journal of Fluid Dynamics》 2016年第1期11-29,共19页
This paper examined the hydromagnetic boundary layer flow of viscoelastic fluid with heat and mass transfer in a vertical channel with rotation and Hall current. A constant suction and injection is applied to the plat... This paper examined the hydromagnetic boundary layer flow of viscoelastic fluid with heat and mass transfer in a vertical channel with rotation and Hall current. A constant suction and injection is applied to the plates. A strong magnetic field is applied in the direction normal to the plates. The entire system rotates with uniform angular velocity (Ω), about the axis perpendicular to the plates. The governing equations are solved by perturbation technique to obtain an analytical result for velocity, temperature, concentration distributions and results are presented graphically for various values of viscoelastic parameter (K2), Prandtl number (Pr), Schmidt number (Sc), radiation parameter (R), heat generation parameter (Qh) and Hall parameter (m). 展开更多
关键词 visco-elastic fluid MHD Hall Effect Porous Medium
下载PDF
Heat and Mass Transfer in MHD Visco-Elastic Fluid Flow through a Porous Medium over a Stretching Sheet with Chemical Reaction 被引量:5
3
作者 Saleh M. Alharbi Mohamed A. A. Bazid Mahmoud S. El Gendy 《Applied Mathematics》 2010年第6期446-455,共10页
This paper presents the study of convective heat and mass transfer characteristics of an incompressible MHD visco-elastic fluid flow immersed in a porous medium over a stretching sheet with chemical reaction and therm... This paper presents the study of convective heat and mass transfer characteristics of an incompressible MHD visco-elastic fluid flow immersed in a porous medium over a stretching sheet with chemical reaction and thermal stratification effects. The resultant governing boundary layer equations are highly non-linear and coupled form of partial differential equations, and they have been solved by using fourth order Runge-Kutta integration scheme with Newton Raphson shooting method. Numerical computations are carried out for the non-dimensional physical parameters. Here a numerical has been carried out to study the effect of different physical parameters such as visco-elasticity, permeability of the porous medium, magnetic field, Grashof number, Schmidt number, heat source parameter and chemical reaction parameter on the flow, heat and mass transfer characteristics. 展开更多
关键词 Heat and Mass Transfer INCOMPRESSIBLE MHD visco-elastic POROUS MEDIUM Chemical Reaction
下载PDF
Unsteady Flow of a Dusty Visco-Elastic Fluid Through an Incliend Channel
4
作者 Geetanjali Alle Aashis.S. Roy +1 位作者 Sangshetty Kalyane Ravi M Sonth 《Advances in Pure Mathematics》 2011年第4期187-192,共6页
The present discussion deals with the study of an unsteady flow of a dusty fluid through an inclined channel under the influence of pulsatile pressure gradient along with the effect of a uniform magnetic field. The an... The present discussion deals with the study of an unsteady flow of a dusty fluid through an inclined channel under the influence of pulsatile pressure gradient along with the effect of a uniform magnetic field. The analytical solutions of the problem are obtained using variable separable and Fourier transform techniques. The graphs drawn for the velocity fields of both fluid and dust phase under the effect of Reynolds number. The velocity profiles for the liquid and the dust particles decreases at different values of time t increases. As the visco-elastic parameter λ increases the velocity of the liquid and the dust particles deceases. When relaxation time parameter σ increases, the velocity of the liquid and dust particles decreases. 展开更多
关键词 DUSTY fluid PULSATILE Pressure Gradient VELOCITIES of Dust and fluid Phase Inclined CHANNEL REYNOLDS Number
下载PDF
UNSTEADY FLOW OF NON-NEWTONIAN VISCO-ELASTIC FLUID IN DUAL-POROSITY MEDIA WITH THE FRACTIONAL DERIVATIVE 被引量:10
5
作者 SHAN Lian-tao TONG Deng-ke XUE Li-li 《Journal of Hydrodynamics》 SCIE EI CSCD 2009年第5期705-713,共9页
The fractional order derivative was introduced to the seepage flow research to establish the relaxation models of non-Newtonian viscoelastic fluids in dual porous media. The flow characteristics of non-Newtonian visco... The fractional order derivative was introduced to the seepage flow research to establish the relaxation models of non-Newtonian viscoelastic fluids in dual porous media. The flow characteristics of non-Newtonian viscoelastic fluids through a dual porous medium were studied by using the Hankel transform, the discrete Laplace transform of sequential fractional derivatives and the generalized Mittag-Leffler function. Exact solutions were obtained for arbitrary fractional order derivative. The long-time and short-time asymptotic solutions for an infinite formation were also resulted. The pressure transient behavior of non-Newtonian viscoelastic fluids flow through an infinite dual porous media was studied by using Stehfest's inversion method of the numerical Laplace transform. It shows that the characteristics of the fluid flow are appreciably affected by the order of the fractional derivative. 展开更多
关键词 fractional calculus non-Newtonian visco-elastic fluids dual porous media exact solution
原文传递
Effect of bubble morphology and behavior on power consumption in non-Newtonian fluids’aeration process 被引量:1
6
作者 Xiemin Liu Jing Wan +5 位作者 Jinnan Sun Lin Zhang Feng Zhang Zhibing Zhang Xinyao Li Zheng Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期243-254,共12页
Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate o... Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate of impeller, ventilation, rheological properties and bubble morphology in the reactor. In this perspective, through optimal computational fluid dynamics models and experiments, the relationship between power consumption, volumetric mass transfer rate(kLa) and initial bubble size(d0) was constructed to establish an efficient operation mode for the aeration process of non-Newtonian fluids. It was found that reducing the d0could significantly increase the oxygen mass transfer rate, resulting in an obvious decrease in the ventilation volume and impeller speed. When d0was regulated within 2-5 mm,an optimal kLa could be achieved, and 21% of power consumption could be saved, compared to the case of bubbles with a diameter of 10 mm. 展开更多
关键词 Non-Newtonian fluids aeration process Power consumption Volumetric mass transfer rate Bubble size
下载PDF
Endoscopic intramural cystogastrostomy for treatment of peripancreatic fluid collection: A viewpoint from a surgeon 被引量:1
7
作者 Chen-Guo Ker 《World Journal of Gastroenterology》 SCIE CAS 2024年第6期610-613,共4页
Percutaneous or endoscopic drainage is the initial choice for the treatment of peripancreatic fluid collection in symptomatic patients.Endoscopic transgastric fenestration(ETGF)was first reported for the management of... Percutaneous or endoscopic drainage is the initial choice for the treatment of peripancreatic fluid collection in symptomatic patients.Endoscopic transgastric fenestration(ETGF)was first reported for the management of pancreatic pseu-docysts of 20 patients in 2008.From a surgeon’s viewpoint,ETGF is a similar procedure to cystogastrostomy in that they both produce a wide outlet orifice for the drainage of fluid and necrotic debris.ETGF can be performed at least 4 wk after the initial onset of acute pancreatitis and it has a high priority over the surgical approach.However,the surgical approach usually has a better success rate because surgical cystogastrostomy has a wider outlet(>6 cm vs 2 cm)than ETGF.However,percutaneous or endoscopic drainage,ETGF,and surgical approach offer various treatment options for peripancreatic fluid collection patients based on their conditions. 展开更多
关键词 Pancreatitis Pancreatic pseudocyst Endoscopic cystogastrostomy Surgical cystogastrostomy Peripancreatic fluid collection Fenestration for pancreatic cyst
下载PDF
An inverse analysis of fluid flow through granular media using differentiable lattice Boltzmann method 被引量:1
8
作者 Qiuyu Wang Krishna Kumar 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2077-2090,共14页
This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeabi... This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications. 展开更多
关键词 Inverse problem fluid flow Granular media Automatic differentiation(AD) Lattice Boltzmann method(LBM)
下载PDF
A HYBRID FEM ALGORTHM FOR FLUID FLOW IN A VISCO-ELASTIC PIPE
9
作者 陈耀松 曹念铮 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第6期539-544,共6页
A variational principle of hybrid FEM is proposed to solve the flow in a visco-elaslic pipe. As an example, the influence of an axisymmetrical stenosis on an artery vibrating flow with a single frequency is calculated.
关键词 A HYBRID FEM ALGORTHM FOR fluid FLOW IN A visco-elastic PIPE FEM
下载PDF
The Conversion of Non-Dispersed Polymers into Low-Potassium Anti-Collapse Drilling Fluids
10
作者 Hao Hu Jian Guan +2 位作者 Shanfa Tang Jialuo Rong Yuanpeng Cheng 《Fluid Dynamics & Materials Processing》 EI 2024年第2期325-335,共11页
Different drillingfluid systems are designed according to mineral composition,lithology and wellbore stability of different strata.In the present study,the conversion of a non-dispersed polymer drillingfluid into a low ... Different drillingfluid systems are designed according to mineral composition,lithology and wellbore stability of different strata.In the present study,the conversion of a non-dispersed polymer drillingfluid into a low potas-sium anti-collapsing drillingfluid is investigated.Since the two drillingfluids belong to completely different types,the key to this conversion is represented by new inhibitors,dispersants and water-loss agents by which a non-dispersed drillingfluid can be turned into a dispersed drillingfluid while ensuring wellbore stability and reason-able rheology(carrying sand—inhibiting cuttings dispersion).In particular,the(QYZ-1)inhibitors and(FSJSS-2)dispersants are used.The former can inhibit the hydration expansion capacity of clay,reduce the dynamic shear force and weaken the viscosity;the latter can improve the sealing effect and reduce thefiltrate loss.The results have shown that after adding a reasonable proportion of these substances(QYZ-1:FSJSS-2)to the non-dispersed polymer drillingfluid,while the apparent viscosity,plastic viscosity,structural viscosity andfluidity index under-went almost negligible changes,the dynamic plastic ratio increased,and thefiltration loss decreased significantly,thereby indicating good compatibility.According to the tests(conducted in the Leijia area),the density was 1.293 g/cm3,and after standing for 24 h,the SF(static settlement factor)was 0.51.Moreover,thefiltration loss was reduced to 4.0 mL,the rolling recovery rate reached 96.92%,with excellent plugging and anti-collapse performances. 展开更多
关键词 Non-dispersed polymer drilling fluid low potassium anti-collapsing drilling fluid drilling fluid conversion drilling fluid reuse filter vector
下载PDF
Functional thermal fluids and their applications in battery thermal management:A comprehensive review
11
作者 Xinyue Xu Keyu Weng +3 位作者 Xitao Lu Yuanqiang Zhang Shuyan Zhu Deqiu Zou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期78-101,共24页
With the increasing requirements for fast charging and discharging,higher requirements have been put forward for the thermal management of power batteries.Therefore,there is an urgent need to develop efficient heat tr... With the increasing requirements for fast charging and discharging,higher requirements have been put forward for the thermal management of power batteries.Therefore,there is an urgent need to develop efficient heat transfer fluids.As a new type of heat transfer fluids,functional thermal fluids mainly includ-ing nanofluids(NFs)and phase change fluids(PCFs),have the advantages of high heat carrying density,high heat transfer rate,and broad operational temperature range.However,challenges that hinder their practical applications remain.In this paper,we firstly overview the classification,thermophysical prop-erties,drawbacks,and corresponding modifications of functional thermal fluids.For NFs,the high ther-mal conductivity and high convective heat transfer performance were mainly elaborated,while the stability and viscosity issues were also analyzed.And then for PCFs,the high heat carrying density was mainly elaborated,while the problems of supercooling,stability,and viscosity were also analyzed.On this basis,the composite fluids combined NFs and PCFs technology,has been summarized.Furthermore,the thermal properties of traditional fluids,NFs,PCFs,and composite fluids are compared,which proves that functional thermal fluids are a good choice to replace traditional fluids as coolants.Then,battery thermal management system(BTMS)based on functional thermal fluids is summarized in detail,and the thermal management effects and pump consumption are compared with that of water-based BTMS.Finally,the current technical challenges that parameters optimization of functional thermal fluids and structures optimization of BTMS systematically are presented.In the future,it is necessary to pay more attention to using machine learning to predict thermophysical properties of functional thermal fluids and their applications for BTMS under actual vehicle conditions. 展开更多
关键词 Functionalthermal fluids Nanofluids Phase change fluids Battery thermal management system Thermophysical properties
下载PDF
Averaged Dynamics of Fluids near the Oscillating Interface in a Hele-Shaw Cell
12
作者 Anastasia Bushueva Olga Vlasova Denis Polezhaev 《Fluid Dynamics & Materials Processing》 EI 2024年第4期847-857,共11页
The steady flow in a Hele-Shaw cell filled with fluids with a high viscosity contrast in the presence of fluid oscillations is experimentally studied.The control of oscillatory dynamics of multiphase systems with inte... The steady flow in a Hele-Shaw cell filled with fluids with a high viscosity contrast in the presence of fluid oscillations is experimentally studied.The control of oscillatory dynamics of multiphase systems with interfaces is a challenging technological problem.We consider miscible(water and glycerol)and immiscible(water and high-viscosity silicone oil PMS-1000)fluids under subsonic oscillations perpendicular to the interface.Observations show that the interface shape depends on the amplitude and frequency of oscillations.The interface is undisturbed only in the absence of oscillations.Under small amplitudes,the interface between water and glycerol widens due to mixing.When the critical amplitude is reached,the interface becomes unstable to the fingering instability:Aqueous fingers penetrate the high-viscosity glycerol and induce intensive mixing of miscible fluids and associated decay of the instability.After the disappearance of the fingers,the interface takes a U-shape in the central part of the cell.A similar effect is observed for immiscible fluids:The oscillating interface tends to bend to the side of a high-viscosity fluid.Again,when the critical amplitude is reached,the fingering instability arises at the convex interface.This paper focuses on the causes of bending of the initially undisturbed interface between miscible or immiscible fluids.For this purpose,we measure the steady flow velocity near the interface and in the bulk of a high-viscosity fluid using Particle Image Velocimetry(PIV). 展开更多
关键词 Hele-Shaw cell OSCILLATIONS steady flow miscible fluids immiscible fluids INTERFACE
下载PDF
Magmatic-hydrothermal Evolution and Mineralization Mechanisms of the Wangjiazhuang Cu(-Mo)Deposit in the Zouping Volcanic Basin,Shandong Province,China:Constraints from Fluid Inclusions
13
作者 SHU Lei YANG Renchao +5 位作者 SHEN Kun YANG Deping MAO Guangzhou LI Min LIU Pengrui MA Xiaodong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第3期679-700,共22页
The Wangjiazhuang Cu(-Mo)deposit,located within the Zouping volcanic basin in western Shandong Province,China,is unique in this area for having an economic value.In order to expound the metallogenetic characteristics ... The Wangjiazhuang Cu(-Mo)deposit,located within the Zouping volcanic basin in western Shandong Province,China,is unique in this area for having an economic value.In order to expound the metallogenetic characteristics of this porphyry-like hydrothermal deposit,a detailed fluid inclusion study has been conducted,employing the techniques of representative sampling,fluid inclusion petrography,microthermometry,Raman spectroscopy,LA-ICP-MS analysis of single fluid inclusions,as well as cathode fluorescence spectrometer analysis of host mineral quartz.The deposit contains mainly two types of orebodies,i.e.veinlet-dissemination-stockwork orebodies in the K-Si alteration zone and pegmatiticquartz sulfide veins above them.In addition,minor breccia ore occurs locally.Four types of fluid inclusions in the deposit and altered quartz monzonite are identified:L-type one-or two-phase aqueous inclusions,V-type vapor-rich inclusions with V/L ratios greater than 50%-90%,D-type multiphase fluid inclusions containing daughter minerals or solids and S-type silicate-bearing fluid inclusions containing mainly muscovite and biotite.Ore petrography and fluid inclusion study has revealed a three-stage mineralization process,driven by magmatic-hydrothermal fluid activity,as follows.Initially,a hydrothermal fluid,separated from the parent magma,infiltrated into the quartz monzonite,resulting in its extensive K-Si alteration,as indicated by silicate-bearing fluid inclusions trapped in altered quartz monzonite.This is followed by the early mineralization,the formation of quartz veinlets and dissemination-stockwork ores.During the main mineralization stage,due to the participation and mixing of meteoric groundwater with magmatic-sourced hydrothermal fluid,the cooling and phase separation caused deposition of metals from the hydrothermal fluids.As a result,the pegmatitic-quartz sulfide-vein ores formed.In the late mineralization stage,decreasing fluid salinity led to the formation of L-type aqueous inclusions and chalcopyrite-sulfosalt ore.Coexistence of V-type and D-type inclusions and their similar homogenization temperatures with different homogenization modes suggest that phase separation or boiling of the ore-forming fluids took place during the early and the main mineralization stages.The formation P-T conditions of S-type inclusions and the early and the main mineralization stages were estimated as ca.156-182 MPa and 450-650℃,350-450℃,18-35 MPa and 280-380℃,8-15 MPa,respectively,based on the microthermometric data of the fluid inclusions formed at the individual stages. 展开更多
关键词 fluid inclusions fluid immiscibility mineralization mechanisms Wangjiazhuang Cu(-Mo)deposit
下载PDF
Nonlinear dynamics of a circular curved cantilevered pipe conveying pulsating fluid based on the geometrically exact model
14
作者 Runqing CAO Zilong GUO +2 位作者 Wei CHEN Huliang DAI Lin WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期261-276,共16页
Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid... Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system. 展开更多
关键词 curved pipe conveying fluid pulsating fluid geometrically exact model(GEM) nonlinear dynamics parametric vibration FLUTTER
下载PDF
Formation damage mechanism and control strategy of the compound function of drilling fluid and fracturing fluid in shale reservoirs
15
作者 SUN Jinsheng XU Chengyuan +6 位作者 KANG Yili JING Haoran ZHANG Jie YANG Bin YOU Lijun ZHANG Hanshi LONG Yifu 《Petroleum Exploration and Development》 SCIE 2024年第2期430-439,共10页
For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture ... For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture extension due to shale minerals erosion by oil-based drilling fluid.With the evaluation for the damage of natural and hydraulic fractures caused by mechanical properties weakening of shale fracture surface,fracture closure and rock powder blocking,the formation damage pattern is proposed with consideration of the compound effect of drilling fluid and fracturing fluid.The formation damage mechanism during drilling and completion process in shale reservoir is revealed,and the protection measures are raised.The drilling fluid can deeply invade into the shale formation through natural and induced fractures,erode shale minerals and weaken the mechanical properties of shale during the drilling process.In the process of hydraulic fracturing,the compound effect of drilling fluid and fracturing fluid further weakens the mechanical properties of shale,results in fracture closure and rock powder shedding,and thus induces stress-sensitive damage and solid blocking damage of natural/hydraulic fractures.The damage can yield significant conductivity decrease of fractures,and restrict the high and stable production of shale oil and gas wells.The measures of anti-collapse and anti-blocking to accelerate the drilling of reservoir section,forming chemical membrane to prevent the weakening of the mechanical properties of shale fracture surface,strengthening the plugging of shale fracture and reducing the invasion range of drilling fluid,optimizing fracturing fluid system to protect fracture conductivity are put forward for reservoir protection. 展开更多
关键词 shale oil and gas drilling fluid fracturing fluid stress-sensitive solid blocking formation damage reservoir protection
下载PDF
Towards implementation of alloy-specific thermo-fluid modelling for laser powder-bed fusion of Mg alloys
16
作者 Mohammad Hoseini-Athar Mikael Ersson Peter Hedström 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2327-2344,共18页
Multi-physics thermo-fluid modeling has been extensively used as an approach to understand melt pool dynamics and defect formation as well as optimizing the process-related parameters of laser powder-bed fusion(L-PBF)... Multi-physics thermo-fluid modeling has been extensively used as an approach to understand melt pool dynamics and defect formation as well as optimizing the process-related parameters of laser powder-bed fusion(L-PBF).However,its capabilities for being implemented as a reliable tool for material design,where minor changes in material-related parameters must be accurately captured,is still in question.In the present research,first,a thermo-fluid computational fluid dynamics(CFD)model is developed and validated against experimental data.Considering the predicted material properties of the pure Mg and commercial ZK60 and WE43 Mg alloys,parametric studies are done attempting to elucidate how the difference in some of the material properties,i.e.,saturated vapor pressure,viscosity,and solidification range,can influence the melt pool dynamics.It is found that a higher saturated vapor pressure,associated with the ZK60 alloy,leads to a deeper unstable keyhole,increasing the keyhole-induced porosity and evaporation mass loss.Higher viscosity and wider solidification range can increase the non-uniformity of temperature and velocity distribution on the keyhole walls,resulting in increased keyhole instability and formation of defects.Finally,the WE43 alloy showed the best behavior in terms of defect formation and evaporation mass loss,providing theoretical support to the extensive use of this alloy in L-PBF.In summary,this study suggests an approach to investigate the effect of materials-related parameters on L-PBF melting and solidification,which can be extremely helpful for future design of new alloys suitable for L-PBF. 展开更多
关键词 Mg alloys Laser powder-bed fusion(L-PBF) Melt pool dynamics Computational fluid dynamics fluid flow
下载PDF
Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
17
作者 杨刚 郑庭 +1 位作者 程启昊 张会臣 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期516-525,共10页
Shear-thinning fluids have been widely used in microfluidic systems,but their internal flow mechanism is still unclear.Therefore,in this paper,molecular dynamics simulations are used to study the laminar flow of shear... Shear-thinning fluids have been widely used in microfluidic systems,but their internal flow mechanism is still unclear.Therefore,in this paper,molecular dynamics simulations are used to study the laminar flow of shear-thinning fluid in a microchannel.We validated the feasibility of our simulation method by evaluating the mean square displacement and Reynolds number of the solution layers.The results show that the change rule of the fluid system's velocity profile and interaction energy can reflect the shear-thinning characteristics of the fluids.The velocity profile resembles a top-hat shape,intensifying as the fluid's power law index decreases.The interaction energy between the wall and the fluid decreases gradually with increasing velocity,and a high concentration of non-Newtonian fluid reaches a plateau sooner.Moreover,the velocity profile of the fluid is related to the molecule number density distribution and their values are inversely proportional.By analyzing the radial distribution function,we found that the hydrogen bonds between solute and water molecules weaken with the increase in velocity.This observation offers an explanation for the shear-thinning phenomenon of the non-Newtonian flow from a micro perspective. 展开更多
关键词 molecular dynamics simulation non-Newtonian fluid MICROCHANNEL SHEAR-THINNING
下载PDF
Evolution of Diagenetic Fluid of the Dawsonite-Bearing Sandstone in the Jiyang Depression,Eastern China
18
作者 LI Fulai MA Wenkuan +1 位作者 ZHANG Chun WANG Kaining 《Journal of Ocean University of China》 CAS CSCD 2024年第1期80-98,共19页
Based on the petrology,isotope geochemistry and fluid inclusions analysis,we established the evolutionary mode of the diagenetic fluid of dawsonite-bearing sandstone in the Jiyang Depression.Dawsonite-bearing sandston... Based on the petrology,isotope geochemistry and fluid inclusions analysis,we established the evolutionary mode of the diagenetic fluid of dawsonite-bearing sandstone in the Jiyang Depression.Dawsonite-bearing sandstone is characterized by double injection of CO_(2)and oil-gas in the Jiyang Depression that have experienced a relatively complex diagenetic fluid evolution process.The diagenetic sequence of secondary minerals involves secondary enlargement of quartz,kaolinite,first-stage calcite,dawsonite,second-stage calcite,ferrocalcite,dolomite and ankerite.Hydrocarbon charging in the dawsonite-bearing sandstone occurred at around 2.6–0 Myr.The CO_(2)charging event occurred during Dongying tectonism,forming the Pingfangwang CO_(2)gas reservoir,which provided an abundant carbon source for dawsonite precipitation.Carbon and oxygen isotopic compositions of dawsonite demonstrate that CO_(2)forming the dawsonite was of an inorganic origin derived from the mantle,and that water mediating the proc-ess during dawsonite precipitation was sequestered brine with a fluid temperature of 82℃.The evolutionary sequence of the diagenetic fluid in the dawsonite-bearing sandstone was:alkaline syngenetic fluids,weak alkaline fluids during organic acid forma-tion,acidic fluids in the early stage of CO_(2)injection,alkaline fluids in the late stage of CO_(2)injection,and weak alkaline fluids during oil and gas charging.The mode indicates an increase in-HCO_(3)because of the CO_(2)injection,and the loss of Ca^(2+)and Mg^(2+)due to the precipitation of carbonate minerals.Therefore,the evolutionary mode of diagenetic fluids is in good agreement with high HCO_(3)^(-),low Ca^(2+)and low Mg^(2+)composition of the present formation water in the dawsonite-bearing sandstone. 展开更多
关键词 evolution of diagenetic fluid DAWSONITE CO_(2)injection and hydrocarbon charging mineral diagenetic sequence iso-topic geochemistry fluid inclusions
下载PDF
Bacteriological Profile of Effusion Fluids Infections at Charles De Gaulle University Pediatric Hospital from 2017 to 2020
19
作者 Kambiré Dinanibè Ouédraogo Oumarou +14 位作者 Tiendrebéogo Salam Tondé Issa Tamboura Mamadou Zida Sylvie Kpoda Dissinviel Sagna Tani Compaoré T. Rebeca Zouré Abdou-Azaque Soubeiga R. Serge Théophile Sawadogo Stanislas Ilboudo Maïmouna Rouamba Hortense Ouédraogo Wenkouni Henri Gautier Ouédraogo-Traoré Rasmata Sanou Mahamoudou 《Open Journal of Medical Microbiology》 2024年第2期146-163,共18页
Introduction: Microbiology of effusion fluids in children in Burkina Faso is characterized by the scarcity of data. This work aimed to study the bacteriological and antibiotics susceptibility profile of bacteria invol... Introduction: Microbiology of effusion fluids in children in Burkina Faso is characterized by the scarcity of data. This work aimed to study the bacteriological and antibiotics susceptibility profile of bacteria involved in effusion fluid infections in paediatrics in order to improve the choice of probabilistic antibiotics therapy. Methods: A cross-sectional, descriptive study was used in children aged 0 to 15 years from 2017 to 2020 at the Charles De Gaulle Pediatric University Hospital Center (CHUP-CDG) in Ouagadougou. Classical bacteriology methods such as macroscopy, Gram staining, identification galleries and antibiotics susceptibility testing were used. Results: Of 231 samples, 64 bacteria were isolated. The most common bacterial strains of pleural fluid were Staphylococcus aureus (25%) and 40% for Enterobacteriaceae. Of the peritoneal fluid, 77% were Enterobacteriaceae with 57% Escherichia coli;and from joint fluid, 33% were S. aureus and 22% for P. aeruginosa. The overall susceptibility profile showed 29% extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL), 10% methicillin-resistant S. aureus (MRSA), and 8% carbapenemases. Conclusion: Bacteriological profile is characterized by ESBL-producing Enterobacteriaceae and MRSA. The most active antibiotics were macrolides, aminoglycosides, and cefoxitin (methicillin) for Gram-positive cocci, carbapenems, and aminoglycosides for Gram-negative bacilli. Then, the monitoring of antibiotics resistance must be permanent. 展开更多
关键词 Bacteriological Profile Effusion fluid INFECTIONS
下载PDF
GENERALIZED FLOW ANALYSIS OF NON-NEWTONIAN VISCO-ELASTICFLUID FLOW THROUGH FRACTAL RESERVOIR
20
作者 同登科 陈钦雷 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1999年第12期1367-1376,共10页
In this paper, fractal geometry theory is used to combine with the seepage flow mechanics to establish the relaxation models of non_Newtonian visco_elastic fluid flow in fractal reservoirs. A method to scale the fract... In this paper, fractal geometry theory is used to combine with the seepage flow mechanics to establish the relaxation models of non_Newtonian visco_elastic fluid flow in fractal reservoirs. A method to scale the fractal properties of a fractal reservoir by the double parameters (d f ,d s ) and to describe the generalized flow characteristics of visco_elastic fluid by four parameters (d f ,d s ,λ v,λ p) are presented. Exact solutions and asymptotic solutions have been obtained by using the Laplace_Weber and Laplace_orthogonal transforms with both infinite and finite reservoirs. The pressure transient behavior of non_Newtonian visco_elastic fluid flow through a fractal reservoir are studied by using the numerical Laplace transform inversion and asymptotic solutions. The law of pressure change for various fractal parameters is obtained. 展开更多
关键词 visco_elastic fluid FRACTAL integral transform well test analysis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部