Nano-SiOdoped with rare earth carboxylate grafting continuous component of functional poly-silicone liquid, a kind of subsidence high-resistance. Electrorheological fluid (ERF) was synthesized. And its viscoelastic pr...Nano-SiOdoped with rare earth carboxylate grafting continuous component of functional poly-silicone liquid, a kind of subsidence high-resistance. Electrorheological fluid (ERF) was synthesized. And its viscoelastic properties were investigated experimentally. The special polarization effect of rare earth in the ERF was also discussed. The forced oscillating behavior was obtained using a rheometer. The variation of the shear modulus of ERF subjected to various stress amplitude and frequency were investigated. The complex shear modulus and storage modulus of ERF were also given at different electric field intensities. Meanwhile, the creep and recovery characteristics of ERF were also measured. The equilibrium compliance Jc and the steady state recoverable compliance JR were investigated as a function of electric field strength and ratio of reactant, and the effect of ERF′s structure was analyzed. With increasing in electric field strength at fixed ratio of reactant, the plastic response diminishes, and the elastic behavior rose.展开更多
Conventional plasticizers deteriorate mechanical and viscoelastic properties of the propellants due to their migration upon aging and long-term storage,which affects reliability and safety properties during exploitati...Conventional plasticizers deteriorate mechanical and viscoelastic properties of the propellants due to their migration upon aging and long-term storage,which affects reliability and safety properties during exploitation.To address this issue,conventional plasticizer,dioctyl adipate(DOA),is replaced by reactive one,castor oil(CO).In addition,three different types of HTPB were used to obtain propellants with designed viscoelastic and mechanical properties.The CO increased propellants viscosity,without a significant impact on the propellant processability,regardless to the type of prepolymer.Conversely,mechanical properties were different depending on the type of resin,which were further analyzed by gel permeation chromatography(GPC).Addition of CO formed a denser polymer network and shifted T_(g) to higher values,compared to the compositions with DOA.The tensile strength of CO-containing propellants was lower at +20℃ and +50℃ compared to the reference compositions,while the strain at maximum load and strain at break were significantly increased with pronounced plastic deformation,especially for samples at -30℃.The inclusion of CO in the propellants composition gives more room for adjusting a wide range of mechanical properties.展开更多
The general development of Rheo-NMR during the last four decades as well as selective hyphenated apparatuses is presented.Based on different magnet types,the current review is divided into two categories,namely low-fi...The general development of Rheo-NMR during the last four decades as well as selective hyphenated apparatuses is presented.Based on different magnet types,the current review is divided into two categories,namely low-field and high-field NMR,while the timedomain NMR is normally applied in the former case and the frequency-domain NMR is adopted in the latter one.Depending on different rheometer cells,it can be further divided into tensile and shear mode Rheo-NMR.The combination of various rheometer cells and NMR facility guarantees our acquisition of molecular level structure and dynamics information under flow conditions,which is crucial for our understanding of the molecular origin of complex fluids.A personal perspective is also presented at last to highlight possible development in this direction.展开更多
An analysis of the response of surface acoustic wave sensors coated with polymer film based on new coating deposition (self-assemble and molecularly imprinted technology) is described and the response formulas are h...An analysis of the response of surface acoustic wave sensors coated with polymer film based on new coating deposition (self-assemble and molecularly imprinted technology) is described and the response formulas are hence deduced. Using the real part of shear modulus, the polymer can be classified into three types: glassy film, glassy-rubbery film and rubbery film, Experimental results show that the attenuation response is in better consistence with the simulation than in Martin's theory, but the velocity response does not accord with the calculation exactly. Maybe it is influenced by the experimental methods and environment. In addition, simulations of gas sorption for polymer films are performed. As for glassy film, the SAW sensor response increases with increasing fihn thickness, and the relationship between the sensor response and the concentration of gas is pretty linear, while as for glassy-rubbery flint and rubbery film, the relationship between the sensor sensitivity anti concentration of gas is very complicated. The ultimately calculated results indicate that the relationship between the sensor response and frequency is not always linear due to the viscoelastic prooerties of the polymer.展开更多
Dysphagia is commonly associated with malnutrition and an increased choking risk.To overcome these complications,food designed for people with dysphagia should have an appropriate texture and a high nutritional value....Dysphagia is commonly associated with malnutrition and an increased choking risk.To overcome these complications,food designed for people with dysphagia should have an appropriate texture and a high nutritional value.In this study,six formulations of a strawberry dessert enriched in protein(calcium caseinate)and fiber(wheat dextrin or inulin)were developed using different hydrocolloids(xanthan gum,carboxymethyl cellulose or modified starch)to provide desirable texture and stability.Nutritional value was calculated and total phenolic content and antioxidant activity of the samples were analyzed.Back-extrusion test,rheological measurements and sensory analysis were performed in refrigerated and frozen samples to characterize their textural and viscoelastic properties.The high content in protein(14.7 g/100 g)and fiber(7.9-8.7 g/100 g)made possible to use the claims“high protein”and“high fiber”.Phytochemicals supplied by strawberries contributed to the antioxidant properties of the dessert.Loss tangent ranged 0.28-0.35 for all the formulations,indicating a weak gel behavior,which could be considered safe to swallow.The formulations with dextrin in combination with carboxymethyl cellulose or xanthan gum seemed to be less susceptible to structural changes during frozen storage.This work provides insights for the development of a nutrient-dense dessert that meets the requirements of people with dysphagia.展开更多
Viscoelastic properties of maleated polypropylene (MAPP)-modified wood flour/polypropylene composites (WPC) were investigated by both a compression stress relaxation method and dynamic mechanical analyses (DMA)....Viscoelastic properties of maleated polypropylene (MAPP)-modified wood flour/polypropylene composites (WPC) were investigated by both a compression stress relaxation method and dynamic mechanical analyses (DMA). Three wood to polymer ratios (40:60, 60:40, and 80:20) and five MAPP loading levels (0, 1, 2, 4 and 8%) were used to study their effects on the viscoelastic prop- erties of MAPP-WPC. The results show that: 1) higher wood to polymer ratio corresponds to higher stress relaxation levels for unmodified WPC. The modification with MAPP has an obvious effect on the stress relaxation of MAPP-WPC at higher wood to polymer ratios (60:40 and 80:20), but almost no effect at the 40:60 wood to polymer ratio. The optimal MAPP loading level for the wood to polymer ratio of 60:40 appears at 1%; 2) the storage modulus reaches its maximum at a MAPP loading level of 1% for wood to polymer ratios of 40:60 and 60:40, while for the 80:20 wood to polymer ratio, a higher storage modulus is observed at higher MAPP loading levels, which is quite consistent with the stress relaxation results. The results suggested that a suitable loading level of MAPP has a positive effect on the viscoelastic properties of WPC at higher wood to polymer ratios. Excessive MAPP loading would have resulted in adverse effects.展开更多
The creep behaviors in deep underground engineering structures,especially in soft rocks,have a remarkable impact on the long-term stability of the excavations,which finally leads to the high risk and failure of it.Acc...The creep behaviors in deep underground engineering structures,especially in soft rocks,have a remarkable impact on the long-term stability of the excavations,which finally leads to the high risk and failure of it.Accordingly,it is essential to recognize the time-dependent deformation through the investigation of this phenomenon.In this study,the creep behaviors of soft rocks were examined to help understand the underlying mechanism of the extended time-dependent deformation.Due to the limited results about the time-dependent properties of the constituents of the rock that reveal their heterogeneity,the targeting nanoindentation technique(TNIT),was adopted to investigate the viscoelastic characteristics of kaolinite and quartz in a two-constituent mudstone sample.The TNIT consists of identifications of mineralogical ingredients in mudstone and nanoindentation experiments on each identified constituent.After conducting experiments,the unloading stages of the typical indentation curves were analyzed to calculate the hardness and elastic modulus of both elements in mudstone.Additionally,the 180 s load-holding stages with the peak load of 50 mN were transformed into the typical creep strain-time curves for fitting analysis by using the Kelvin model,the standard viscoelastic model,and the extended viscoelastic model.Fitting results show that the standard viscoelastic model not only can perfectly express the nanoindentation creep behaviors of both kaolinite and quartz but also can produce suitable constants used to measure their creep parameters.The creep parameters of kaolinite are much smaller than that of quartz,which causes the considerable time-dependent deformation of the soft mudstone.Eventually,the standard viscoelastic model was also verified on the quartz in a sandstone sample.展开更多
Discrete models such as the lumped parameter model and the finite element model are widely used in the solution of soil amplification of earthquakes. However, neither of the models will accurately estimate the natural...Discrete models such as the lumped parameter model and the finite element model are widely used in the solution of soil amplification of earthquakes. However, neither of the models will accurately estimate the natural frequencies of soil deposit, nor simulate a damping of frequency independence. This research develops a new discrete model for onedimensional viscoelastic response analysis of layered soil deposit based on the mode equivalence method. The new discrete model is a one-dimensional equivalent multi-degree-of-freedom(MDOF) system characterized by a series of concentrated masses, springs and dashpots with a special configuration. The dynamic response of the equivalent MDOF system is analytically derived and the physical parameters are formulated in terms of modal properties. The equivalent MDOF system is verified through a comparison of amplification functions with the available theoretical solutions. The appropriate number of degrees of freedom(DOFs) in the equivalent MDOF system is estimated. A comparative study of the equivalent MDOF system with the existing discrete models is performed. It is shown that the proposed equivalent MDOF system can exactly present the natural frequencies and the hysteretic damping of soil deposits and provide more accurate results with fewer DOFs.展开更多
Significant correlations exist for the total sample between the dough viscoelastic properties and quality, but little information about these links is available. This study investigates the relationship between the gl...Significant correlations exist for the total sample between the dough viscoelastic properties and quality, but little information about these links is available. This study investigates the relationship between the gluten molecular conformation and the dough viscoelastic properties of the Zhengmai 379 wheat variety with different relative humidity(RH) values during storage.The results showed that protein extractability, free sulfhydryl(SH) groups, and wet gluten contents decreased to a certain degree during storage, while the glutenin quantity significantly varied. Significant negative correlation coefficients were found between the dough viscosity at 50% RH and the β-turn contents at 40% RH(-0.918) or 60% RH(-0.949)(P < 0.01), the dough viscosity at50% RH and the β-turn contents at 50% RH(-0.912)(P < 0.05), and the dough viscosity at 50% RH and the α-helix/β-sheet ratio at 40% RH(-0.875), 50% RH(-0.869), or 60% RH(-0.843)(P < 0.05). Significant correlation coefficients were further observed between the dough viscosity at 50% RH and the β-sheet contents at 60% RH(0.927)(P < 0.01) and between the dough viscosity at50% RH and the β-sheet contents at 40% RH(0.910) or 50% RH(0.908)(P < 0.05). A decrease in the free SH groups of gluten and an increase in the low-molecular weight contents suggested that gliadin was incorporated via SS crosslinking to the glutenin-like protein, which did not dissolve in ethanol.展开更多
Several gelatin-silicate composites, with or without incorporation of Ca2+ ions, were synthesized through sol-gel processing starting from gelatin and 3- (glycidoxypropyl) trimethoxysilane. The structure around the Si...Several gelatin-silicate composites, with or without incorporation of Ca2+ ions, were synthesized through sol-gel processing starting from gelatin and 3- (glycidoxypropyl) trimethoxysilane. The structure around the Si atoms was similar for all the samples. The measurement of viscoelastic properties indicated that the glass transition temperature and activation energy decreased with the incorporation of Ca2+ ions. The Ca2+ ion-containing composites were bioactive as they spontaneously deposited apatite when soaked in a simulated body fluid of the Kokubo recipe.展开更多
This article deals with the study of the viscoelastic and thermal properties of polyurethane (PU) rigid foamsfrom biobased and recycled components. Rapeseed oil (RO) and recycled poly(ethylene terephthalate)(PET) were...This article deals with the study of the viscoelastic and thermal properties of polyurethane (PU) rigid foamsfrom biobased and recycled components. Rapeseed oil (RO) and recycled poly(ethylene terephthalate)(PET) were used to synthesize PU polyols. Addition of adipic acid (ADA) to polyol resulted in improvedthermal and viscoelastic properties of foam materials. ADA content was varied from 1 to 6 wt%. Results ofthe dynamic mechanical spectra indicate an increase of the storage modulus E′ and the loss modulus E″ inthe whole temperature range for specimens with higher loading of ADA. In addition, damping factor shiftedto higher temperatures, but damping intensity remained almost unaffected by the compositions. Scanningelectron microscopy of the foams’ cross sections testified that the average cells’ size of 110 mm was unaffectedby the ADA content in polyol.展开更多
In this work, the rheological changes of several crude oil samples exposed to ultrasonic waves for different time intervals in addition to the effect of temperature on viscosity behavior of heavy crude oils were inves...In this work, the rheological changes of several crude oil samples exposed to ultrasonic waves for different time intervals in addition to the effect of temperature on viscosity behavior of heavy crude oils were investigated using a series of steady shear flow and oscillatory tests. The colloidal structural evolutions of flocs in oil samples were illustrated by analysis of the size distribution of flocculated asphaltene particles (confocal microscopy tests). The rheological investigations indicate that the ultrasonic irradiation dissolved heavy components in crude oil. After ultrasonic treatment, the Kouh-e-Mond crude oil was found to be pseudoplastic. In addition, confocal microscopy confirms that there was an optimum duration for ultrasonic irradiation, at which the viscosity and flocculation rate of asphaltenic crude oils reduced to the minimum values. The optimum was found to be approximately 40 min for the Kouh-e-Mond crude oil. Experimental results illustrate that the ultrasonic irradiation could disaggregate heavy colloid components in crude oil, and breakdown of asphaltene molecules would only occur in a specific time interval of irradiation. Also according to the temperature sweep test, the oil temperature rise caused by ultrasonic irradiation was not the main reason for theological changes of the crude oil and this alteration may be due to physical and chemical phenomena induced by sonication in crude oil.展开更多
The viscoelastic properties of the normal PTFE plastic and strengthened PTFEplastic for bearing pad are measured. The mechanical properties of the composite material forbearing pad, which is made of the aforementioned...The viscoelastic properties of the normal PTFE plastic and strengthened PTFEplastic for bearing pad are measured. The mechanical properties of the composite material forbearing pad, which is made of the aforementioned plastics as matrix reinforced by fine bronzeelastic springs, are modeled and relaxation modulus of the material are presented. The differencebetween these two kinds of PTFE is studied. The results show that the complex modulus of PTFEplastics for bearing pad is higher than that of normal PTFE plastics.展开更多
To improve the performance of asphalt pavement, the dynamic and static tests of asphalt were used to measure its viscoelastic properties under different time. Based on the obtained data of static creep compliances and...To improve the performance of asphalt pavement, the dynamic and static tests of asphalt were used to measure its viscoelastic properties under different time. Based on the obtained data of static creep compliances and dynamic compliances according to the static creep test and dynamic test of asphalt using the dynamic shear rheometer, the discrete retardation time spectra were attained using the non-linear regression method. All viscoelastic functions are mathematically equivalent and belong to the same retardation time spectra, so the dynamic compliances of asphalt were converted to the static creep compliance using the retardation time spectra. Good correlations were found between calculation results and measurement results. In accordance to these findings, the retardation time spectra can accurately transform static and dynamic viscoelastic functions. Therefore, we can obtain viscoelastic properties over much larger time or frequency region than measurement results.展开更多
In the present paper,a structure-based viscoelastic model is employed to characterize and predict the viscoelastic properties of a wormlike micellar solution at 20℃.Considering the effect of shear rate on linear visc...In the present paper,a structure-based viscoelastic model is employed to characterize and predict the viscoelastic properties of a wormlike micellar solution at 20℃.Considering the effect of shear rate on linear viscoelastic property,a structural parameter f is obtained.Meanwhile,another structural parameterζis determined when the effects of time and shear rate are considered simultaneously.Both structural parameters are calculated by using linear interpolation method.The startup experiment can be described well by the model.The prediction on the shear stress in the ramping-up region of the hysteresis loop experiment shows an apparent relation between the rheological behaviors in the startup experiment and those in the hysteresis loop experiment.For the hysteresis loop experiment with 30 s time interval,the defect of the calculation in 0.001-0.01 s^(−1) is due to the lack of the ramping-down history effect.In addition,the model can improve completeness of perimental data used for characterizing rheological property.展开更多
Background The mechanical microenvironment of the chondrocytes plays an important role in cartilage homeostasis and in the health of the joint. The pericellular matrix, cellular membrane of the chondrocytes, and their...Background The mechanical microenvironment of the chondrocytes plays an important role in cartilage homeostasis and in the health of the joint. The pericellular matrix, cellular membrane of the chondrocytes, and their cytoskeletal structures are key elements in the mechanical environment. The aims of this study are to measure the viscoelastic properties of isolated chondrons and chondrocytes from rabbit knee cartilage using micropipette aspiration and to determine the effect of aging on these properties. Methods Three age groups of rabbit knees were evaluated: (1) young (2 months, n=10); (2) adult (8 months, n=10); and (3) old (31 months, n=10). Chondrocytes were isolated from the right knee cartilage and chondrons were isolated from left knees using enzymatic methods. Micropipette aspiration combined with a standard linear viscoelastic solid model was used to quantify changes in the viscoelastic properties of chondrons and chondrocytes within 2 hours of isolation. The morphology and structure of isolated chondrons were evaluated by optical microscope using hematoxylin and eosin staining and collagen-6 immunofluorescence staining. Results In response to an applied constant 0.3-0.4 kPa of negative pressure, all chondrocytes exhibited standard linear viscoelastic solid properties. Model predictions of the creep data showed that the average equilibrium modulus (E~), instantaneous modulus (E0), and apparent viscosity (~) of old chondrocytes was significantly lower than the young and adult chondrocytes (P 〈0.001); however, no difference was found between young and adult chondrocytes (P 〉0.05). The adult and old chondrons generally possessed a thicker pericellular matrix (PCM) with more enclosed cells. The young and adult chondrons exhibited the same viscoelastic creep behavior under a greater applied pressure (1.0-1.1 kPa) without the deformation seen in the old chondrons. The viscoelastic properties (E,, E0, and/~) of young and adult chondrons were significantly greater than that observed in young and adult cells, respectively (P 〈0.001). The adult chondrons were stiffer than the young chondrons under micropipette aspiration (P 〈0.001). Conclusions Our findings provide a theoretical model to measure the viscoelastic properties of the chondrons as a whole unit by micropipette aspiration, and further suggest that the properties of the chondrocytes and PCM have an important influence on the biomechanical microenvironment of the knee joint cartilage degeneration that occurs with aging.展开更多
The viscoelastic properties of synthetic polyisoprenes (PI) reinforced by white carbon black (WCB) have been investigated and compared with WCB reinforced natural rubber (NR), including cure characteristics, phy...The viscoelastic properties of synthetic polyisoprenes (PI) reinforced by white carbon black (WCB) have been investigated and compared with WCB reinforced natural rubber (NR), including cure characteristics, physio-mechanical and dynamic mechanical properties. Compared with NR, PI loaded with the same amount of WCB (PI/WCB) exhibited shorter scorch time and optimal cure time, indicating that WCB fillers are comparatively easier to conjugate with PI. The tensile strength and elongation at break decreased with WCB filling in both PI and NR vulcanizates. The hardness of the rubber vulcanizates increased with the WCB filling in the rubber matrix. PI/WCB blends exhibited smaller hardness data, lower tensile strength, as well as lower elongation at break and tensile stress. Increasing the amount of WCB in rubber matrix induced the Payne effect. However, the Payne effect is much more obvious for the PI/WCB system, and PI/WCB also displayed higher storage modulus whereas lower loss modulus and loss tangent than NR/WCB, which could all be attributed to the poor dispersibilities of WCB in the PI matrix.展开更多
Aging can significantly affect the performance of asphalt mixtures, causing increase in stiffness, reduction in relaxation capability and increase in cracking susceptibility. It is also well known that fundamental vis...Aging can significantly affect the performance of asphalt mixtures, causing increase in stiffness, reduction in relaxation capability and increase in cracking susceptibility. It is also well known that fundamental viscoelastic properties are used for design and modelling of asphalt mixtures and pavement structures to addressing rutting, fatigue and thermal cracking concerns. The objective of this paper is to study how the viscoelastic properties of asphalt mixture change over time, and evaluate and identify the cracking and aging susceptibility of asphalt mixtures with different mix variables during material selection and mixture design. Ten mixtures are evaluated using different laboratory conditioning protocols to simulate a range of aging levels in the field. The complex modulus test is then conducted on the lab aged mixtures to measure the viscoelastic properties in order to construct the dynamic modulus and phase angle master curves. The mixture Glover-Rowe(G-Rm) parameter and the shape parameters of the dynamic modulus and phase angle master curves, including inflection point frequency(-β/γ), difference between the glassy modulus and the inflection point modulus(γ), peak value of phase angle(a) and the horizontal position(frequency) of the peak phase angle value(c), are determined and evaluated for the mixtures with different aging conditions and mix variables. The study indicates the ability of the G-Rmparameter and all the master curve shape parameters to capture the effect of different aging conditions on linear viscoelastic mixture properties, as well as the cracking and aging susceptibility of asphalt mixtures.展开更多
In this work, a method based on atomic force microscopy (AFM) approach-reside-retract experiments was established to simultaneously quantify the elastic and viscoelastic properties of single cells. First, the elastic ...In this work, a method based on atomic force microscopy (AFM) approach-reside-retract experiments was established to simultaneously quantify the elastic and viscoelastic properties of single cells. First, the elastic and viscoelastic properties of normal breast cells and cancerous breast cells were measured, showing significant differences in Young’s modulus and relaxation times between normal and cancerous breast cells. Remarkable differences in cellular topography between normal and cancerous breast cells were also revealed by AFM imaging. Next, the elastic and viscoelasitc properties of three other types of cell lines and primary normal B lymphocytes were measured; results demonstrated the potential of cellular viscoelastic properties in complementing cellular Young’s modulus for discerning different states of cells. This research provides a novel way to quantify the mechanical properties of cells by AFM, which allows investigation of the biomechanical behaviors of single cells from multiple aspects.展开更多
Measurement the viscoelastic properties is important for studying the developmental and pathological behavior of soft biological tissues.Magnetic resonance elastography(MRE)is a non-invasive method for in vivo measure...Measurement the viscoelastic properties is important for studying the developmental and pathological behavior of soft biological tissues.Magnetic resonance elastography(MRE)is a non-invasive method for in vivo measurement of tissue viscoelasticity.As a flexible method capable of testing small samples,indentation has been widely used for characterizing soft tissues.Using 2nd-order Prony series and dimensional analysis,we analyzed and compared the model parameters estimated from both indentation and MRE.Conversions of the model parameters estimated from the two methods were established.We found that the indention test is better at capturing the dynamic response of tissues at a frequency less than 10 Hz,while MRE is better for describing the frequency responses at a relatively higher range.The results provided helpful information for testing soft tissues using indentation and MRE.The models analyzed are also helpful for quantifying the frequency response of viscoelastic tissues.展开更多
基金NSF (50373034) Physics Chemistry National Key Subject Cultivation Point Grant of Jiangsu Province
文摘Nano-SiOdoped with rare earth carboxylate grafting continuous component of functional poly-silicone liquid, a kind of subsidence high-resistance. Electrorheological fluid (ERF) was synthesized. And its viscoelastic properties were investigated experimentally. The special polarization effect of rare earth in the ERF was also discussed. The forced oscillating behavior was obtained using a rheometer. The variation of the shear modulus of ERF subjected to various stress amplitude and frequency were investigated. The complex shear modulus and storage modulus of ERF were also given at different electric field intensities. Meanwhile, the creep and recovery characteristics of ERF were also measured. The equilibrium compliance Jc and the steady state recoverable compliance JR were investigated as a function of electric field strength and ratio of reactant, and the effect of ERF′s structure was analyzed. With increasing in electric field strength at fixed ratio of reactant, the plastic response diminishes, and the elastic behavior rose.
基金the support of this research from the Serbian Ministry of Education,Science and Technological Development(Grant No.451-03-68/2023-14/200325)Ministry of Defense(Grant No.VA-TT/1/22-24)。
文摘Conventional plasticizers deteriorate mechanical and viscoelastic properties of the propellants due to their migration upon aging and long-term storage,which affects reliability and safety properties during exploitation.To address this issue,conventional plasticizer,dioctyl adipate(DOA),is replaced by reactive one,castor oil(CO).In addition,three different types of HTPB were used to obtain propellants with designed viscoelastic and mechanical properties.The CO increased propellants viscosity,without a significant impact on the propellant processability,regardless to the type of prepolymer.Conversely,mechanical properties were different depending on the type of resin,which were further analyzed by gel permeation chromatography(GPC).Addition of CO formed a denser polymer network and shifted T_(g) to higher values,compared to the compositions with DOA.The tensile strength of CO-containing propellants was lower at +20℃ and +50℃ compared to the reference compositions,while the strain at maximum load and strain at break were significantly increased with pronounced plastic deformation,especially for samples at -30℃.The inclusion of CO in the propellants composition gives more room for adjusting a wide range of mechanical properties.
基金This work was financially supported by the National Natural Science Foundation of China(U20A20256,51973207)the NSAF Joint Fund(U2030203).
文摘The general development of Rheo-NMR during the last four decades as well as selective hyphenated apparatuses is presented.Based on different magnet types,the current review is divided into two categories,namely low-field and high-field NMR,while the timedomain NMR is normally applied in the former case and the frequency-domain NMR is adopted in the latter one.Depending on different rheometer cells,it can be further divided into tensile and shear mode Rheo-NMR.The combination of various rheometer cells and NMR facility guarantees our acquisition of molecular level structure and dynamics information under flow conditions,which is crucial for our understanding of the molecular origin of complex fluids.A personal perspective is also presented at last to highlight possible development in this direction.
基金This work was supported by National Natural Science Foundation (No. 10374100).
文摘An analysis of the response of surface acoustic wave sensors coated with polymer film based on new coating deposition (self-assemble and molecularly imprinted technology) is described and the response formulas are hence deduced. Using the real part of shear modulus, the polymer can be classified into three types: glassy film, glassy-rubbery film and rubbery film, Experimental results show that the attenuation response is in better consistence with the simulation than in Martin's theory, but the velocity response does not accord with the calculation exactly. Maybe it is influenced by the experimental methods and environment. In addition, simulations of gas sorption for polymer films are performed. As for glassy film, the SAW sensor response increases with increasing fihn thickness, and the relationship between the sensor response and the concentration of gas is pretty linear, while as for glassy-rubbery flint and rubbery film, the relationship between the sensor sensitivity anti concentration of gas is very complicated. The ultimately calculated results indicate that the relationship between the sensor response and frequency is not always linear due to the viscoelastic prooerties of the polymer.
基金Gobierno de Navarra(Proyectos Estratégicos para Navarra 2020)the FEDER program for the financial support of project NUTRI+。
文摘Dysphagia is commonly associated with malnutrition and an increased choking risk.To overcome these complications,food designed for people with dysphagia should have an appropriate texture and a high nutritional value.In this study,six formulations of a strawberry dessert enriched in protein(calcium caseinate)and fiber(wheat dextrin or inulin)were developed using different hydrocolloids(xanthan gum,carboxymethyl cellulose or modified starch)to provide desirable texture and stability.Nutritional value was calculated and total phenolic content and antioxidant activity of the samples were analyzed.Back-extrusion test,rheological measurements and sensory analysis were performed in refrigerated and frozen samples to characterize their textural and viscoelastic properties.The high content in protein(14.7 g/100 g)and fiber(7.9-8.7 g/100 g)made possible to use the claims“high protein”and“high fiber”.Phytochemicals supplied by strawberries contributed to the antioxidant properties of the dessert.Loss tangent ranged 0.28-0.35 for all the formulations,indicating a weak gel behavior,which could be considered safe to swallow.The formulations with dextrin in combination with carboxymethyl cellulose or xanthan gum seemed to be less susceptible to structural changes during frozen storage.This work provides insights for the development of a nutrient-dense dessert that meets the requirements of people with dysphagia.
基金supported by the National Natural Science Foundation of China (Grant No. 30871966)
文摘Viscoelastic properties of maleated polypropylene (MAPP)-modified wood flour/polypropylene composites (WPC) were investigated by both a compression stress relaxation method and dynamic mechanical analyses (DMA). Three wood to polymer ratios (40:60, 60:40, and 80:20) and five MAPP loading levels (0, 1, 2, 4 and 8%) were used to study their effects on the viscoelastic prop- erties of MAPP-WPC. The results show that: 1) higher wood to polymer ratio corresponds to higher stress relaxation levels for unmodified WPC. The modification with MAPP has an obvious effect on the stress relaxation of MAPP-WPC at higher wood to polymer ratios (60:40 and 80:20), but almost no effect at the 40:60 wood to polymer ratio. The optimal MAPP loading level for the wood to polymer ratio of 60:40 appears at 1%; 2) the storage modulus reaches its maximum at a MAPP loading level of 1% for wood to polymer ratios of 40:60 and 60:40, while for the 80:20 wood to polymer ratio, a higher storage modulus is observed at higher MAPP loading levels, which is quite consistent with the stress relaxation results. The results suggested that a suitable loading level of MAPP has a positive effect on the viscoelastic properties of WPC at higher wood to polymer ratios. Excessive MAPP loading would have resulted in adverse effects.
基金The work presented in this paper was supported by the projects of"the Fundamental Research Funds for the Central Universities(2020ZDPY0221)""the Guizhou Science and Technology Department([2020]2Y026)".The authors are also grateful to the anonymous reviewers for carefully reading the manuscript and providing many helpful comments.Sun Changlun acknowledges,in particular,the powerful support received from his wife,Zhou Fan,over the years.
文摘The creep behaviors in deep underground engineering structures,especially in soft rocks,have a remarkable impact on the long-term stability of the excavations,which finally leads to the high risk and failure of it.Accordingly,it is essential to recognize the time-dependent deformation through the investigation of this phenomenon.In this study,the creep behaviors of soft rocks were examined to help understand the underlying mechanism of the extended time-dependent deformation.Due to the limited results about the time-dependent properties of the constituents of the rock that reveal their heterogeneity,the targeting nanoindentation technique(TNIT),was adopted to investigate the viscoelastic characteristics of kaolinite and quartz in a two-constituent mudstone sample.The TNIT consists of identifications of mineralogical ingredients in mudstone and nanoindentation experiments on each identified constituent.After conducting experiments,the unloading stages of the typical indentation curves were analyzed to calculate the hardness and elastic modulus of both elements in mudstone.Additionally,the 180 s load-holding stages with the peak load of 50 mN were transformed into the typical creep strain-time curves for fitting analysis by using the Kelvin model,the standard viscoelastic model,and the extended viscoelastic model.Fitting results show that the standard viscoelastic model not only can perfectly express the nanoindentation creep behaviors of both kaolinite and quartz but also can produce suitable constants used to measure their creep parameters.The creep parameters of kaolinite are much smaller than that of quartz,which causes the considerable time-dependent deformation of the soft mudstone.Eventually,the standard viscoelastic model was also verified on the quartz in a sandstone sample.
基金National Natural Science Foundation of China(51208296&51478343)Shanghai Committee of Science and Technology(13231200503)+2 种基金Fundamental Research Funds for the Central Universities(2013KJ095&101201438)Shanghai Educational Development Foundation(13CG17)National Key Technology R&D Program(2012BAK24B04)
文摘Discrete models such as the lumped parameter model and the finite element model are widely used in the solution of soil amplification of earthquakes. However, neither of the models will accurately estimate the natural frequencies of soil deposit, nor simulate a damping of frequency independence. This research develops a new discrete model for onedimensional viscoelastic response analysis of layered soil deposit based on the mode equivalence method. The new discrete model is a one-dimensional equivalent multi-degree-of-freedom(MDOF) system characterized by a series of concentrated masses, springs and dashpots with a special configuration. The dynamic response of the equivalent MDOF system is analytically derived and the physical parameters are formulated in terms of modal properties. The equivalent MDOF system is verified through a comparison of amplification functions with the available theoretical solutions. The appropriate number of degrees of freedom(DOFs) in the equivalent MDOF system is estimated. A comparative study of the equivalent MDOF system with the existing discrete models is performed. It is shown that the proposed equivalent MDOF system can exactly present the natural frequencies and the hysteretic damping of soil deposits and provide more accurate results with fewer DOFs.
基金Supported by National Key Research and Development Program(2016YFD0400203)National Natural Science Foundation of China(31571780 and 31771897)+2 种基金General Science and Technology Research Projects of Zhengzhou(N2013G0077)Key Scientific Research Project of Universities in Henan Province(16A210018)the focus on Fostering Basic Research Fund of Henan University of Technology(2013JCYJ05)
文摘Significant correlations exist for the total sample between the dough viscoelastic properties and quality, but little information about these links is available. This study investigates the relationship between the gluten molecular conformation and the dough viscoelastic properties of the Zhengmai 379 wheat variety with different relative humidity(RH) values during storage.The results showed that protein extractability, free sulfhydryl(SH) groups, and wet gluten contents decreased to a certain degree during storage, while the glutenin quantity significantly varied. Significant negative correlation coefficients were found between the dough viscosity at 50% RH and the β-turn contents at 40% RH(-0.918) or 60% RH(-0.949)(P < 0.01), the dough viscosity at50% RH and the β-turn contents at 50% RH(-0.912)(P < 0.05), and the dough viscosity at 50% RH and the α-helix/β-sheet ratio at 40% RH(-0.875), 50% RH(-0.869), or 60% RH(-0.843)(P < 0.05). Significant correlation coefficients were further observed between the dough viscosity at 50% RH and the β-sheet contents at 60% RH(0.927)(P < 0.01) and between the dough viscosity at50% RH and the β-sheet contents at 40% RH(0.910) or 50% RH(0.908)(P < 0.05). A decrease in the free SH groups of gluten and an increase in the low-molecular weight contents suggested that gliadin was incorporated via SS crosslinking to the glutenin-like protein, which did not dissolve in ethanol.
文摘Several gelatin-silicate composites, with or without incorporation of Ca2+ ions, were synthesized through sol-gel processing starting from gelatin and 3- (glycidoxypropyl) trimethoxysilane. The structure around the Si atoms was similar for all the samples. The measurement of viscoelastic properties indicated that the glass transition temperature and activation energy decreased with the incorporation of Ca2+ ions. The Ca2+ ion-containing composites were bioactive as they spontaneously deposited apatite when soaked in a simulated body fluid of the Kokubo recipe.
文摘This article deals with the study of the viscoelastic and thermal properties of polyurethane (PU) rigid foamsfrom biobased and recycled components. Rapeseed oil (RO) and recycled poly(ethylene terephthalate)(PET) were used to synthesize PU polyols. Addition of adipic acid (ADA) to polyol resulted in improvedthermal and viscoelastic properties of foam materials. ADA content was varied from 1 to 6 wt%. Results ofthe dynamic mechanical spectra indicate an increase of the storage modulus E′ and the loss modulus E″ inthe whole temperature range for specimens with higher loading of ADA. In addition, damping factor shiftedto higher temperatures, but damping intensity remained almost unaffected by the compositions. Scanningelectron microscopy of the foams’ cross sections testified that the average cells’ size of 110 mm was unaffectedby the ADA content in polyol.
文摘In this work, the rheological changes of several crude oil samples exposed to ultrasonic waves for different time intervals in addition to the effect of temperature on viscosity behavior of heavy crude oils were investigated using a series of steady shear flow and oscillatory tests. The colloidal structural evolutions of flocs in oil samples were illustrated by analysis of the size distribution of flocculated asphaltene particles (confocal microscopy tests). The rheological investigations indicate that the ultrasonic irradiation dissolved heavy components in crude oil. After ultrasonic treatment, the Kouh-e-Mond crude oil was found to be pseudoplastic. In addition, confocal microscopy confirms that there was an optimum duration for ultrasonic irradiation, at which the viscosity and flocculation rate of asphaltenic crude oils reduced to the minimum values. The optimum was found to be approximately 40 min for the Kouh-e-Mond crude oil. Experimental results illustrate that the ultrasonic irradiation could disaggregate heavy colloid components in crude oil, and breakdown of asphaltene molecules would only occur in a specific time interval of irradiation. Also according to the temperature sweep test, the oil temperature rise caused by ultrasonic irradiation was not the main reason for theological changes of the crude oil and this alteration may be due to physical and chemical phenomena induced by sonication in crude oil.
基金This project is supported by National Natural Science Foundation of China(No.19990510)Selected from Proceedings of 2000 the First International Conference on Mechanical Engineering
文摘The viscoelastic properties of the normal PTFE plastic and strengthened PTFEplastic for bearing pad are measured. The mechanical properties of the composite material forbearing pad, which is made of the aforementioned plastics as matrix reinforced by fine bronzeelastic springs, are modeled and relaxation modulus of the material are presented. The differencebetween these two kinds of PTFE is studied. The results show that the complex modulus of PTFEplastics for bearing pad is higher than that of normal PTFE plastics.
基金Sponsored by the Post-doctoral Innovation Science Foundation of South China University of Technology(Grant No.20080222)
文摘To improve the performance of asphalt pavement, the dynamic and static tests of asphalt were used to measure its viscoelastic properties under different time. Based on the obtained data of static creep compliances and dynamic compliances according to the static creep test and dynamic test of asphalt using the dynamic shear rheometer, the discrete retardation time spectra were attained using the non-linear regression method. All viscoelastic functions are mathematically equivalent and belong to the same retardation time spectra, so the dynamic compliances of asphalt were converted to the static creep compliance using the retardation time spectra. Good correlations were found between calculation results and measurement results. In accordance to these findings, the retardation time spectra can accurately transform static and dynamic viscoelastic functions. Therefore, we can obtain viscoelastic properties over much larger time or frequency region than measurement results.
文摘In the present paper,a structure-based viscoelastic model is employed to characterize and predict the viscoelastic properties of a wormlike micellar solution at 20℃.Considering the effect of shear rate on linear viscoelastic property,a structural parameter f is obtained.Meanwhile,another structural parameterζis determined when the effects of time and shear rate are considered simultaneously.Both structural parameters are calculated by using linear interpolation method.The startup experiment can be described well by the model.The prediction on the shear stress in the ramping-up region of the hysteresis loop experiment shows an apparent relation between the rheological behaviors in the startup experiment and those in the hysteresis loop experiment.For the hysteresis loop experiment with 30 s time interval,the defect of the calculation in 0.001-0.01 s^(−1) is due to the lack of the ramping-down history effect.In addition,the model can improve completeness of perimental data used for characterizing rheological property.
基金This work was supported in part by 973 Program (No. 2009CB526514) and National Natural Science Foundation (No. 30872616 and No. 81071495) of China.
文摘Background The mechanical microenvironment of the chondrocytes plays an important role in cartilage homeostasis and in the health of the joint. The pericellular matrix, cellular membrane of the chondrocytes, and their cytoskeletal structures are key elements in the mechanical environment. The aims of this study are to measure the viscoelastic properties of isolated chondrons and chondrocytes from rabbit knee cartilage using micropipette aspiration and to determine the effect of aging on these properties. Methods Three age groups of rabbit knees were evaluated: (1) young (2 months, n=10); (2) adult (8 months, n=10); and (3) old (31 months, n=10). Chondrocytes were isolated from the right knee cartilage and chondrons were isolated from left knees using enzymatic methods. Micropipette aspiration combined with a standard linear viscoelastic solid model was used to quantify changes in the viscoelastic properties of chondrons and chondrocytes within 2 hours of isolation. The morphology and structure of isolated chondrons were evaluated by optical microscope using hematoxylin and eosin staining and collagen-6 immunofluorescence staining. Results In response to an applied constant 0.3-0.4 kPa of negative pressure, all chondrocytes exhibited standard linear viscoelastic solid properties. Model predictions of the creep data showed that the average equilibrium modulus (E~), instantaneous modulus (E0), and apparent viscosity (~) of old chondrocytes was significantly lower than the young and adult chondrocytes (P 〈0.001); however, no difference was found between young and adult chondrocytes (P 〉0.05). The adult and old chondrons generally possessed a thicker pericellular matrix (PCM) with more enclosed cells. The young and adult chondrons exhibited the same viscoelastic creep behavior under a greater applied pressure (1.0-1.1 kPa) without the deformation seen in the old chondrons. The viscoelastic properties (E,, E0, and/~) of young and adult chondrons were significantly greater than that observed in young and adult cells, respectively (P 〈0.001). The adult chondrons were stiffer than the young chondrons under micropipette aspiration (P 〈0.001). Conclusions Our findings provide a theoretical model to measure the viscoelastic properties of the chondrons as a whole unit by micropipette aspiration, and further suggest that the properties of the chondrocytes and PCM have an important influence on the biomechanical microenvironment of the knee joint cartilage degeneration that occurs with aging.
基金financially supported by the National Basic Research Program of China(No.2010CB934700)
文摘The viscoelastic properties of synthetic polyisoprenes (PI) reinforced by white carbon black (WCB) have been investigated and compared with WCB reinforced natural rubber (NR), including cure characteristics, physio-mechanical and dynamic mechanical properties. Compared with NR, PI loaded with the same amount of WCB (PI/WCB) exhibited shorter scorch time and optimal cure time, indicating that WCB fillers are comparatively easier to conjugate with PI. The tensile strength and elongation at break decreased with WCB filling in both PI and NR vulcanizates. The hardness of the rubber vulcanizates increased with the WCB filling in the rubber matrix. PI/WCB blends exhibited smaller hardness data, lower tensile strength, as well as lower elongation at break and tensile stress. Increasing the amount of WCB in rubber matrix induced the Payne effect. However, the Payne effect is much more obvious for the PI/WCB system, and PI/WCB also displayed higher storage modulus whereas lower loss modulus and loss tangent than NR/WCB, which could all be attributed to the poor dispersibilities of WCB in the PI matrix.
基金New Hampshire Department of Transportation for sponsoring this study。
文摘Aging can significantly affect the performance of asphalt mixtures, causing increase in stiffness, reduction in relaxation capability and increase in cracking susceptibility. It is also well known that fundamental viscoelastic properties are used for design and modelling of asphalt mixtures and pavement structures to addressing rutting, fatigue and thermal cracking concerns. The objective of this paper is to study how the viscoelastic properties of asphalt mixture change over time, and evaluate and identify the cracking and aging susceptibility of asphalt mixtures with different mix variables during material selection and mixture design. Ten mixtures are evaluated using different laboratory conditioning protocols to simulate a range of aging levels in the field. The complex modulus test is then conducted on the lab aged mixtures to measure the viscoelastic properties in order to construct the dynamic modulus and phase angle master curves. The mixture Glover-Rowe(G-Rm) parameter and the shape parameters of the dynamic modulus and phase angle master curves, including inflection point frequency(-β/γ), difference between the glassy modulus and the inflection point modulus(γ), peak value of phase angle(a) and the horizontal position(frequency) of the peak phase angle value(c), are determined and evaluated for the mixtures with different aging conditions and mix variables. The study indicates the ability of the G-Rmparameter and all the master curve shape parameters to capture the effect of different aging conditions on linear viscoelastic mixture properties, as well as the cracking and aging susceptibility of asphalt mixtures.
基金supported by the National Natural Science Foundation of China (61503372, 61522312, U1613220, 61327014,61433017)the Youth Innovation Promotion Association CAS (2017243)the CAS FEA International Partnership Program for Creative Research Teams
文摘In this work, a method based on atomic force microscopy (AFM) approach-reside-retract experiments was established to simultaneously quantify the elastic and viscoelastic properties of single cells. First, the elastic and viscoelastic properties of normal breast cells and cancerous breast cells were measured, showing significant differences in Young’s modulus and relaxation times between normal and cancerous breast cells. Remarkable differences in cellular topography between normal and cancerous breast cells were also revealed by AFM imaging. Next, the elastic and viscoelasitc properties of three other types of cell lines and primary normal B lymphocytes were measured; results demonstrated the potential of cellular viscoelastic properties in complementing cellular Young’s modulus for discerning different states of cells. This research provides a novel way to quantify the mechanical properties of cells by AFM, which allows investigation of the biomechanical behaviors of single cells from multiple aspects.
基金This work was supported by the National Natural Science Foundation of China(Grant 31870941)Shanghai Science and Technology Committee(Grant 1944190700).
文摘Measurement the viscoelastic properties is important for studying the developmental and pathological behavior of soft biological tissues.Magnetic resonance elastography(MRE)is a non-invasive method for in vivo measurement of tissue viscoelasticity.As a flexible method capable of testing small samples,indentation has been widely used for characterizing soft tissues.Using 2nd-order Prony series and dimensional analysis,we analyzed and compared the model parameters estimated from both indentation and MRE.Conversions of the model parameters estimated from the two methods were established.We found that the indention test is better at capturing the dynamic response of tissues at a frequency less than 10 Hz,while MRE is better for describing the frequency responses at a relatively higher range.The results provided helpful information for testing soft tissues using indentation and MRE.The models analyzed are also helpful for quantifying the frequency response of viscoelastic tissues.