Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly...Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly demanded to design and fabricate high performance asymmetric polarization converters which could covert the natural light to one particular linearly polarized light with high efficiency.Traditionally,polarizers could be achieved by controllers with crystals and polymers exhibiting birefringence.However,the polarizers are bulky in size and the theoretical conversion efficiency of the polarizers is limited to 0.5 with unpolarized light incidence.In this paper,we propose a polarization converter which could preserve high transmission for one linearly polarized light and convert the orthogonal linearly polarized light to its cross-polarized with high transmittance based on a multi-layer chiral metasurface.Theoretical results show that normally incident y-polarized light preserves high transmittance for the wavelength range from 685 nm to 800 nm while the orthogonal normally incident x-polarized light is efficiently converted to the y-polarized light with high transmittance from 725 nm to 748 nm.Accordingly,for unpolarized light incidence,transmittance larger than 0.5 has been successfully achieved in a broadband wavelength range from 712 nm to 773 nm with a maximum transmittance of 0.58 at 732 nm.展开更多
Despite the widespread prevalence of daily sunscreen usage, solar-induced skin damage continues to occur. We have previously reported that solar visible light and near-infrared, in addition to ultraviolet radiation, p...Despite the widespread prevalence of daily sunscreen usage, solar-induced skin damage continues to occur. We have previously reported that solar visible light and near-infrared, in addition to ultraviolet radiation, perform as aging factors and induce deleterious effects such as photoaging, vasodilation, muscle thinning, skin ptosis, photoimmunosupression and photocarcinogenesis. Despite this, most commonly used sunscreens only block ultraviolet radiation. To evaluate the complete solar-spectrum blocking ability of sunscreens produced by internationally well-known companies, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer utilizes a unique, single monochromatic design covering a wavelength range of 240 to 2600 nm. Sunscreens (thickness, 0.1 mm, SPF50+, PA+++ or ++++) from internationally well-known companies blocked 78.8% - 99.9% of ultraviolet, 33.4% - 99.6% of visible light, and 27.0% - 76.4% of near-infrared. It can be concluded that while most commercially available sunscreens filter ultraviolet radiation, they are not effective at blocking visible light and near-infrared radiation. The results of this study imply that sunscreens that provide comprehensive photoprotection from ultraviolet through to near-infrared should be considered to prevent skin photodamage.展开更多
Despite the widespread recommendation and use of sunscreens and ultraviolet blocking materials, solar-induced skin damage and photoageing continues to pose a problem to human health worldwide. We have previously repor...Despite the widespread recommendation and use of sunscreens and ultraviolet blocking materials, solar-induced skin damage and photoageing continues to pose a problem to human health worldwide. We have previously reported that solar visible light and near-infrared also contribute to skin damage and photo ageing. Most commonly recommended sunscreens are only effective throughout the UV spectrum, offering no protection from visible light and near-infrared. A possible solution could be to augment sunscreens with metal oxides which block visible light and near-infrared radiation. To evaluate the enhanced solar-spectrum blocking ability of novel low viscosity sunscreen containing zinc and iron oxides, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer deploys a unique, single monochromatic design to detect wavelength penetration in the range of 240 to 2600 nm. The Sunscreen base without zinc oxide and iron oxides (control) blocked over 80% of ultraviolet-C and ultraviolet-B but did not block ultraviolet-A, visible light, or near-infrared. The novel low viscosity zinc oxide sample blocked almost over 90% ultraviolet, but did not block visible light and near-infrared sufficiently. However, the samples with the novel low viscosity zinc oxide, iron oxides and erioglaucine blocked almost over 90% of ultraviolet, visible light and near-infrared. It can be concluded that this novel combination of low viscosity zinc oxide, iron oxides and erioglaucine is effective at blocking ultraviolet, visible light and near-infrared radiation. The results of this study imply that sunscreens that provide comprehensive photoprotection from ultraviolet through to near-infrared should be adopted to prevent skin photodamage.展开更多
Solar-induced skin damage continues to pose a problem to human health worldwide, despite the widespread recommendation and use of sunscreens. We have previously reported that solar visible light and near-infrared also...Solar-induced skin damage continues to pose a problem to human health worldwide, despite the widespread recommendation and use of sunscreens. We have previously reported that solar visible light and near-infrared also contribute to skin damage and photoageing. Most commonly recommended sunscreens are only effective throughout the UV spectrum, offering no protection from visible light and near-infrared. To evaluate the enhanced solar-spectrum blocking ability of iron oxides, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer deploys a unique, single monochromatic design to detect wavelength penetration in the range of 240 to 2600 nm. The sample without iron oxide (control) blocked over 80% of ultraviolet-C and ultraviolet-B but did not block ultraviolet-A, visible light, or near-infrared wavelengths. The samples with yellow, and red iron oxide blocked over 90% ultraviolet, but did not block visible light and near-infrared effectively. The sample with black iron oxide blocked visible light, and near-infrared effectively compared with other samples with yellow, blue, and red iron oxide. The sample with red and black iron oxides, and the sample with yellow, blue, red, and black iron oxides blocked ultraviolet through to near-infrared. It can be concluded that dark colored iron oxide combinations are effective at blocking from ultraviolet through to visible light and near-infrared radiation. The results of this study may also suggest that biological colour of human skin and subcutaneous tissues are conserved for comprehensive photoprotection.展开更多
Corn stalks are a kind of common organic fertilizer and feed material in agriculture in China,as well as an important source of modern biomass energy and new materials.Hemicellulose is an important component in corn s...Corn stalks are a kind of common organic fertilizer and feed material in agriculture in China,as well as an important source of modern biomass energy and new materials.Hemicellulose is an important component in corn stalks,and it is very important to determine its content in corn stalks.In this paper,the feasibility of near-infrared spectroscopy(NIRS)combined with chemometrics for rapid detection of hemicellulose content in corn stalks was studied.In order to improve the accuracy of NIRS detection,a new intelligent optimization algorithm,dung beetle optimizer(DBO),was applied to select characteristic wavelengths of NIRS.Its modeling performance was compared with that based on characteristic wavelength selection using genetic algorithm(GA)and binary particle swarm optimization(BPSO),and it was found that the characteristic wavelength selection performance of DBO was excellent,and the regression accuracy of hemicellulose quantitative detection model established by its preferred characteristic wavelengths was better than the above two intelligent optimization algorithms.展开更多
Using visible and near-infrared (Vis-NIR) spectroscopy combined with partial least squares (PLS) regression, the rapid reagent-free analysis model for chromium (Cr) content in tideland reclamation soil in the Pearl Ri...Using visible and near-infrared (Vis-NIR) spectroscopy combined with partial least squares (PLS) regression, the rapid reagent-free analysis model for chromium (Cr) content in tideland reclamation soil in the Pearl River Delta, China was established. Based on Savitzky-Golay (SG) smoothing and PLS regression, a multi-parameters optimization platform (SG-PLS) covering 264 modes was constructed to select the appropriately spectral preprocessing mode. The optimal SG-PLS model was determined according to the prediction effect. The selected optimal parameters <em>d, p, m</em> and LV were 2, 6, 23 and 8, respectively. Using the validation samples that were not involved in modeling, the root mean square error (SEP<sub>V</sub>), relative root mean square error (R-SEP<sub>V</sub>) and correlation coefficients (R<sub>P, V</sub>) of prediction were 11.66 mg<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>, 10.7% and 0.722, respectively. The results indicated that the feasibility of using Vis-NIR spectroscopy combined with SG-PLS method to analyze soil Cr content. The constructed multi-parameters optimization platform with SG-PLS is expected to be applied to a wider field of analysis. The rapid detection method has important application values to large-scale agricultural production.展开更多
The identification of soy sauce adulteration can avoid fraud, and protect the rights and interests of producers and consumers. Based on two measurement models (1 mm, 10 mm), the visible and near-infrared (Vis-NIR) spe...The identification of soy sauce adulteration can avoid fraud, and protect the rights and interests of producers and consumers. Based on two measurement models (1 mm, 10 mm), the visible and near-infrared (Vis-NIR) spectroscopy combined with standard normal variate-partial least squares-discriminant analysis (SNV-PLS-DA) was used to establish the discriminant analysis models for adulterated and brewed soy sauces. Chubang soy sauce was selected as an identification brand (negative, 70). The adulteration samples (positive, 72) were prepared by mixing Chubang soy sauce and blended soy sauce with different adulteration rates. Among them, the “blended soy sauce” sample was concocted of salt water (NaCl), monosodium glutamate (C<sub>5</sub>H<sub>10</sub>NNaO<sub>5</sub>) and caramel color (C<sub>6</sub>H<sub>8</sub>O<sub>3</sub>). The rigorous calibration-prediction-validation sample design was adopted. For the case of 1 mm, five waveband models (visible, short-NIR, long-NIR, whole NIR and whole scanning regions) were established respectively;in the case of 10 mm, three waveband models (visible, short-NIR and visible-short-NIR regions) for unsaturated absorption were also established respectively. In independent validation, the models of all wavebands in the cases of 1 mm and 10 mm have achieved good discrimination effects. For the case of 1 mm, the visible model achieved the optimal validation effect, the validation recognition-accuracy rate (RAR<sub>V</sub>) was 99.6%;while in the case of 10 mm, both the visible and visible-short-NIR models achieved the optimal validation effect (RAR<sub>V</sub> = 100%). The detection method does not require reagents and is fast and simple, which is easy to promote the application. The results can provide valuable reference for designing small dedicated spectrometers with different measurement modals and different spectral regions.展开更多
Objective: Humans are increasingly exposed to artificial light and electromagnetic wave radiation, in addition to solar radiation. Many studies have shown the biological effects of ultra-violet and near-infrared expos...Objective: Humans are increasingly exposed to artificial light and electromagnetic wave radiation, in addition to solar radiation. Many studies have shown the biological effects of ultra-violet and near-infrared exposure, but few have extensively investigated the innate biological defenses within human tissues against visible light and near-infrared exposure. Herein, we investigated spectral properties of endogenous human biological defenses against ultra-violet to near-infrared. Methods: A double-beam spectrophotometer (190 - 2700 nm) was used to measure the transmission spectra of a saline solution used to imitate perspiration, and oil to imitate sebum, as well as human skin, blood, adipose tissue, and muscle. Results: Saline (thickness, 0.5 mm) blocked 27.5% - 98.6% of ultra-violet, 13.2% - 34.3% of visible light, and 10.7% - 99.8% of near-infrared. Oil (thickness, 0.5 mm) blocked 50.5% - 100% of ultra-violet, 28.7% - 54.8% of visible light, and 19.0% - 98.3% of near-infrared. Blood thicknesses of 0.05 and 0.5 mm blocked over 97.8%, 100% of ultra-violet, over 94.6%, 99.7% of visible light, and over 75.8%, 99.4% of near-infrared, respectively. Skin thicknesses of 0.25 and 0.5 mm blocked over 99.4%, 100% of ultra-violet and over 94.3%, 99.7% of visible light, and over 74.7%, 93.5% of near-infrared, respectively. Adipose tissue thickness of 0.25 and0.5 mm blocked over 98.3%, 100% of ultra-violet, over 94.7%, 99.7% of visible light, and over 88.1%, 98.6% of near-infrared, respectively. Muscle thickness of 0.25 and0.5 mm blocked over 95.4%, 99.8% of ultra-violet, over 93.1%, 99.5% of visible light, and over 86.9%, 98.3% of near-infrared, respectively. Conclusions: Humans possess endogenous biological protection against ultra-violet, visible light and near-infrared exposure on multiple levels, including through perspiration, sebum, blood, skin, adipose tissue, and muscle. Since solar and artificial radiation affects human tissues, biological defenses made of biological materials may be induced to protect subcutaneous tissues against these wavelengths.展开更多
One of the characteristics of Autism Spectrum Disorder (ASD) is social disorder. The specificity of facial and expression recognition for people with ASD is gathering attention as a factor of this social disorder. The...One of the characteristics of Autism Spectrum Disorder (ASD) is social disorder. The specificity of facial and expression recognition for people with ASD is gathering attention as a factor of this social disorder. The study examined the hemodynamic activities in the prefrontal cortex using near-infrared spectroscopy (NIRS) when a person with ASD performed an expression recognition task. The subjects were twenty males (18 - 22 years old) with ASD and without intellectual disabilities. Forty-five healthy males matched for age and sex were included as a control group. In both groups, the degree of autistic tendencies was evaluated using the Autism-Spectrum Quotient (AQ). Using eight standard emotional expressions of Japanese people, two expression recognition tasks were set. An NIRS was used to measure the prefrontal cortex blood mobilization during the expression-processing process. The AQ was significantly higher in the ASD group, while the rate of overall correct expression response was significantly lower (p ρ= −0.40 p < 0.001). In the automatic expression-processing task, no activation in the prefrontal cortex was found in either the ASD or the control group. In the conscious expression-processing task, the activation of the left and right lateral prefrontal cortex was weaker in the ASD group compared to the control group. Unlike in the control group, a mild activation of posterior prefrontal cortex was found in the ASD group. The expression-processing process of the ASD group was found to be different from that of the control group. NIRS was effective in detecting a brain function disorder in people with ASD during an expression-processing process.展开更多
The plasma rotation velocity were measured in HL-1M with Doppler shifts of CⅢ、 C Ⅱ、 O Ⅱ and H. line by a SKD high resolution spectrometer. The effects .of density' hydrogen pellet injection and carbon impuri...The plasma rotation velocity were measured in HL-1M with Doppler shifts of CⅢ、 C Ⅱ、 O Ⅱ and H. line by a SKD high resolution spectrometer. The effects .of density' hydrogen pellet injection and carbon impurities injected by laser-blow-off on toroidal(V) and poloidal (Vθ)rotation velocity have been observed. The Vθ measured from H. line is only half of that from C Ⅱ impurity line.展开更多
The optical components of the visible light band are widely used in daily life and industrial development. However due to the serious loss of light and the high cost, the application is limited. The broadband gap meta...The optical components of the visible light band are widely used in daily life and industrial development. However due to the serious loss of light and the high cost, the application is limited. The broadband gap metasurface will change this situation due to its low absorption and high efficiency. Herein, we simulate a size-adjustable metasurface of the Al doped ZnO (AZO) nanorod arrays based on finite difference time domain method (FDTD) which can realize the conversion of amplitude polarization and phase in the full visible band. The corresponding theoretical polarization conversion efficiency can reach as high as 91.48% (450 nm), 95.27% (530 nm), and 91.01% (65 nm). The modulation of focusing wavelength can be realized by directly adjusting the height of the AZO nanorod. The designed half-wave plate and metalens can be applied in the imaging power modulation halfwave conversion and enriching the spectroscopy.展开更多
Amylose contents in 298 rice samples were determined by conventional method, and a near-infrared spectral model of rice amylose content was established by partial least squares. The calibration determination coefficie...Amylose contents in 298 rice samples were determined by conventional method, and a near-infrared spectral model of rice amylose content was established by partial least squares. The calibration determination coefficient (RC) was 0.95; the standard error of calibration (SEC) was 1.58; and the determination coefficient of cross validation (RP) was 0.91, and the standard error of prediction SEP was 1.92. External validation was performed with 20 samples, the predicted values and the determined values were not significantly different, and the correlation coefficient between them was over 95%. The calibration model has good prediction perfor- mance, and could rapidly determine rice amylose content instead of chemical ana- lytical method.展开更多
Fructus cnidii (Chinese name shechuangzi) is the fruit produced by Cnidium monnieri (L.) Cusson (Umbelliferae). It is a perennial herb that is used to treat skin-related diseases and gynecopathyell. Recent pharm...Fructus cnidii (Chinese name shechuangzi) is the fruit produced by Cnidium monnieri (L.) Cusson (Umbelliferae). It is a perennial herb that is used to treat skin-related diseases and gynecopathyell. Recent pharmacological studies have revealed crude extracts or components isolated from fructus cnidii possess antiallergic, antipruritic, antidermatophytic, antibacterial, antifungal, and antiosteoporotic activities. Osthole and imperatorin are the major compounds present in shechuangzi. They are often used as standards for the evaluation of the quality of shechuangzi products.展开更多
Modeling Light propagation within human head to deduce spatial sensitivity distribution(SSD)is important for Near-infrared spectroscopy(NIRS)/imaging(NIRI)and diffuse correlation tomography.Lots of head models have be...Modeling Light propagation within human head to deduce spatial sensitivity distribution(SSD)is important for Near-infrared spectroscopy(NIRS)/imaging(NIRI)and diffuse correlation tomography.Lots of head models have been used on this issue,including layered head model,artificial simplified head model,MRI slices described head model,and visible human head model.Hereinto,visible Chinese human(VCH)head model is considered to be a most faithful presentation of anatomical structure,and has been highlighted to be employed in modeling light propagation.However,it is not practical for all researchers to use VCH head models and actually increasing number of people are using magnet resonance imaging(MRI)head models.Here,all the above head models were simulated and compared,and we focused on the effect of using di®erent head models on predictions of SSD.Our results were in line with the previous reports on the effect of cerebral cortex folding geometry.Moreover,the in fluence on SSD increases with thefidelity of head models.And surprisingly,the SSD percentages in scalp and gray matter(region of interest)in MRI head model were found to be 80%and 125%higher than in VCH head model.MRI head models induced nonignorable discrepancy in SSD estimation when compared with VCH head model.This study,as we believe,is the first to focus on comparison among full serials of head model on estimating SSD,and provided quantitative evidence for MRI head model users to calibrate their SSD estimation.展开更多
Nanometer zinc oxide was prepared by solid phase reaction. And the ultraviolet visible spectral properties of nanometer zinc oxide colloidal solution dispersed in both water and oil phases were studied. The results sh...Nanometer zinc oxide was prepared by solid phase reaction. And the ultraviolet visible spectral properties of nanometer zinc oxide colloidal solution dispersed in both water and oil phases were studied. The results show that the absorbance of the colloidal solution to ultraviolet light increases with the decrease of wavelength and reaches about 2.5 at the wavelength of 200 nm. When the mass fraction of nanometer zinc oxide becomes lower, the transmittance of the colloidal solution to visible light gets higher, and it is much higher than that of normal zinc oxide under the same conditions, indicating that nanometer zinc oxide dispersed in both water and oil phases has high transmittance to visible light and good shield to ultraviolet light. Therefore it is suitable for the replacement of organic ultraviolet absorber and titanium dioxide in cosmetics.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62075173 and 12274478)the National Key Research and Development Program of China(Grant Nos.2021YFB2800302 and 2021YFB2800604).
文摘Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly demanded to design and fabricate high performance asymmetric polarization converters which could covert the natural light to one particular linearly polarized light with high efficiency.Traditionally,polarizers could be achieved by controllers with crystals and polymers exhibiting birefringence.However,the polarizers are bulky in size and the theoretical conversion efficiency of the polarizers is limited to 0.5 with unpolarized light incidence.In this paper,we propose a polarization converter which could preserve high transmission for one linearly polarized light and convert the orthogonal linearly polarized light to its cross-polarized with high transmittance based on a multi-layer chiral metasurface.Theoretical results show that normally incident y-polarized light preserves high transmittance for the wavelength range from 685 nm to 800 nm while the orthogonal normally incident x-polarized light is efficiently converted to the y-polarized light with high transmittance from 725 nm to 748 nm.Accordingly,for unpolarized light incidence,transmittance larger than 0.5 has been successfully achieved in a broadband wavelength range from 712 nm to 773 nm with a maximum transmittance of 0.58 at 732 nm.
文摘Despite the widespread prevalence of daily sunscreen usage, solar-induced skin damage continues to occur. We have previously reported that solar visible light and near-infrared, in addition to ultraviolet radiation, perform as aging factors and induce deleterious effects such as photoaging, vasodilation, muscle thinning, skin ptosis, photoimmunosupression and photocarcinogenesis. Despite this, most commonly used sunscreens only block ultraviolet radiation. To evaluate the complete solar-spectrum blocking ability of sunscreens produced by internationally well-known companies, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer utilizes a unique, single monochromatic design covering a wavelength range of 240 to 2600 nm. Sunscreens (thickness, 0.1 mm, SPF50+, PA+++ or ++++) from internationally well-known companies blocked 78.8% - 99.9% of ultraviolet, 33.4% - 99.6% of visible light, and 27.0% - 76.4% of near-infrared. It can be concluded that while most commercially available sunscreens filter ultraviolet radiation, they are not effective at blocking visible light and near-infrared radiation. The results of this study imply that sunscreens that provide comprehensive photoprotection from ultraviolet through to near-infrared should be considered to prevent skin photodamage.
文摘Despite the widespread recommendation and use of sunscreens and ultraviolet blocking materials, solar-induced skin damage and photoageing continues to pose a problem to human health worldwide. We have previously reported that solar visible light and near-infrared also contribute to skin damage and photo ageing. Most commonly recommended sunscreens are only effective throughout the UV spectrum, offering no protection from visible light and near-infrared. A possible solution could be to augment sunscreens with metal oxides which block visible light and near-infrared radiation. To evaluate the enhanced solar-spectrum blocking ability of novel low viscosity sunscreen containing zinc and iron oxides, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer deploys a unique, single monochromatic design to detect wavelength penetration in the range of 240 to 2600 nm. The Sunscreen base without zinc oxide and iron oxides (control) blocked over 80% of ultraviolet-C and ultraviolet-B but did not block ultraviolet-A, visible light, or near-infrared. The novel low viscosity zinc oxide sample blocked almost over 90% ultraviolet, but did not block visible light and near-infrared sufficiently. However, the samples with the novel low viscosity zinc oxide, iron oxides and erioglaucine blocked almost over 90% of ultraviolet, visible light and near-infrared. It can be concluded that this novel combination of low viscosity zinc oxide, iron oxides and erioglaucine is effective at blocking ultraviolet, visible light and near-infrared radiation. The results of this study imply that sunscreens that provide comprehensive photoprotection from ultraviolet through to near-infrared should be adopted to prevent skin photodamage.
文摘Solar-induced skin damage continues to pose a problem to human health worldwide, despite the widespread recommendation and use of sunscreens. We have previously reported that solar visible light and near-infrared also contribute to skin damage and photoageing. Most commonly recommended sunscreens are only effective throughout the UV spectrum, offering no protection from visible light and near-infrared. To evaluate the enhanced solar-spectrum blocking ability of iron oxides, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer deploys a unique, single monochromatic design to detect wavelength penetration in the range of 240 to 2600 nm. The sample without iron oxide (control) blocked over 80% of ultraviolet-C and ultraviolet-B but did not block ultraviolet-A, visible light, or near-infrared wavelengths. The samples with yellow, and red iron oxide blocked over 90% ultraviolet, but did not block visible light and near-infrared effectively. The sample with black iron oxide blocked visible light, and near-infrared effectively compared with other samples with yellow, blue, and red iron oxide. The sample with red and black iron oxides, and the sample with yellow, blue, red, and black iron oxides blocked ultraviolet through to near-infrared. It can be concluded that dark colored iron oxide combinations are effective at blocking from ultraviolet through to visible light and near-infrared radiation. The results of this study may also suggest that biological colour of human skin and subcutaneous tissues are conserved for comprehensive photoprotection.
基金Supported by San Heng San Zong Project of Heilongjiang Bayi Agricultural University(ZRCPY202314).
文摘Corn stalks are a kind of common organic fertilizer and feed material in agriculture in China,as well as an important source of modern biomass energy and new materials.Hemicellulose is an important component in corn stalks,and it is very important to determine its content in corn stalks.In this paper,the feasibility of near-infrared spectroscopy(NIRS)combined with chemometrics for rapid detection of hemicellulose content in corn stalks was studied.In order to improve the accuracy of NIRS detection,a new intelligent optimization algorithm,dung beetle optimizer(DBO),was applied to select characteristic wavelengths of NIRS.Its modeling performance was compared with that based on characteristic wavelength selection using genetic algorithm(GA)and binary particle swarm optimization(BPSO),and it was found that the characteristic wavelength selection performance of DBO was excellent,and the regression accuracy of hemicellulose quantitative detection model established by its preferred characteristic wavelengths was better than the above two intelligent optimization algorithms.
文摘Using visible and near-infrared (Vis-NIR) spectroscopy combined with partial least squares (PLS) regression, the rapid reagent-free analysis model for chromium (Cr) content in tideland reclamation soil in the Pearl River Delta, China was established. Based on Savitzky-Golay (SG) smoothing and PLS regression, a multi-parameters optimization platform (SG-PLS) covering 264 modes was constructed to select the appropriately spectral preprocessing mode. The optimal SG-PLS model was determined according to the prediction effect. The selected optimal parameters <em>d, p, m</em> and LV were 2, 6, 23 and 8, respectively. Using the validation samples that were not involved in modeling, the root mean square error (SEP<sub>V</sub>), relative root mean square error (R-SEP<sub>V</sub>) and correlation coefficients (R<sub>P, V</sub>) of prediction were 11.66 mg<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>, 10.7% and 0.722, respectively. The results indicated that the feasibility of using Vis-NIR spectroscopy combined with SG-PLS method to analyze soil Cr content. The constructed multi-parameters optimization platform with SG-PLS is expected to be applied to a wider field of analysis. The rapid detection method has important application values to large-scale agricultural production.
文摘The identification of soy sauce adulteration can avoid fraud, and protect the rights and interests of producers and consumers. Based on two measurement models (1 mm, 10 mm), the visible and near-infrared (Vis-NIR) spectroscopy combined with standard normal variate-partial least squares-discriminant analysis (SNV-PLS-DA) was used to establish the discriminant analysis models for adulterated and brewed soy sauces. Chubang soy sauce was selected as an identification brand (negative, 70). The adulteration samples (positive, 72) were prepared by mixing Chubang soy sauce and blended soy sauce with different adulteration rates. Among them, the “blended soy sauce” sample was concocted of salt water (NaCl), monosodium glutamate (C<sub>5</sub>H<sub>10</sub>NNaO<sub>5</sub>) and caramel color (C<sub>6</sub>H<sub>8</sub>O<sub>3</sub>). The rigorous calibration-prediction-validation sample design was adopted. For the case of 1 mm, five waveband models (visible, short-NIR, long-NIR, whole NIR and whole scanning regions) were established respectively;in the case of 10 mm, three waveband models (visible, short-NIR and visible-short-NIR regions) for unsaturated absorption were also established respectively. In independent validation, the models of all wavebands in the cases of 1 mm and 10 mm have achieved good discrimination effects. For the case of 1 mm, the visible model achieved the optimal validation effect, the validation recognition-accuracy rate (RAR<sub>V</sub>) was 99.6%;while in the case of 10 mm, both the visible and visible-short-NIR models achieved the optimal validation effect (RAR<sub>V</sub> = 100%). The detection method does not require reagents and is fast and simple, which is easy to promote the application. The results can provide valuable reference for designing small dedicated spectrometers with different measurement modals and different spectral regions.
文摘Objective: Humans are increasingly exposed to artificial light and electromagnetic wave radiation, in addition to solar radiation. Many studies have shown the biological effects of ultra-violet and near-infrared exposure, but few have extensively investigated the innate biological defenses within human tissues against visible light and near-infrared exposure. Herein, we investigated spectral properties of endogenous human biological defenses against ultra-violet to near-infrared. Methods: A double-beam spectrophotometer (190 - 2700 nm) was used to measure the transmission spectra of a saline solution used to imitate perspiration, and oil to imitate sebum, as well as human skin, blood, adipose tissue, and muscle. Results: Saline (thickness, 0.5 mm) blocked 27.5% - 98.6% of ultra-violet, 13.2% - 34.3% of visible light, and 10.7% - 99.8% of near-infrared. Oil (thickness, 0.5 mm) blocked 50.5% - 100% of ultra-violet, 28.7% - 54.8% of visible light, and 19.0% - 98.3% of near-infrared. Blood thicknesses of 0.05 and 0.5 mm blocked over 97.8%, 100% of ultra-violet, over 94.6%, 99.7% of visible light, and over 75.8%, 99.4% of near-infrared, respectively. Skin thicknesses of 0.25 and 0.5 mm blocked over 99.4%, 100% of ultra-violet and over 94.3%, 99.7% of visible light, and over 74.7%, 93.5% of near-infrared, respectively. Adipose tissue thickness of 0.25 and0.5 mm blocked over 98.3%, 100% of ultra-violet, over 94.7%, 99.7% of visible light, and over 88.1%, 98.6% of near-infrared, respectively. Muscle thickness of 0.25 and0.5 mm blocked over 95.4%, 99.8% of ultra-violet, over 93.1%, 99.5% of visible light, and over 86.9%, 98.3% of near-infrared, respectively. Conclusions: Humans possess endogenous biological protection against ultra-violet, visible light and near-infrared exposure on multiple levels, including through perspiration, sebum, blood, skin, adipose tissue, and muscle. Since solar and artificial radiation affects human tissues, biological defenses made of biological materials may be induced to protect subcutaneous tissues against these wavelengths.
文摘One of the characteristics of Autism Spectrum Disorder (ASD) is social disorder. The specificity of facial and expression recognition for people with ASD is gathering attention as a factor of this social disorder. The study examined the hemodynamic activities in the prefrontal cortex using near-infrared spectroscopy (NIRS) when a person with ASD performed an expression recognition task. The subjects were twenty males (18 - 22 years old) with ASD and without intellectual disabilities. Forty-five healthy males matched for age and sex were included as a control group. In both groups, the degree of autistic tendencies was evaluated using the Autism-Spectrum Quotient (AQ). Using eight standard emotional expressions of Japanese people, two expression recognition tasks were set. An NIRS was used to measure the prefrontal cortex blood mobilization during the expression-processing process. The AQ was significantly higher in the ASD group, while the rate of overall correct expression response was significantly lower (p ρ= −0.40 p < 0.001). In the automatic expression-processing task, no activation in the prefrontal cortex was found in either the ASD or the control group. In the conscious expression-processing task, the activation of the left and right lateral prefrontal cortex was weaker in the ASD group compared to the control group. Unlike in the control group, a mild activation of posterior prefrontal cortex was found in the ASD group. The expression-processing process of the ASD group was found to be different from that of the control group. NIRS was effective in detecting a brain function disorder in people with ASD during an expression-processing process.
文摘The plasma rotation velocity were measured in HL-1M with Doppler shifts of CⅢ、 C Ⅱ、 O Ⅱ and H. line by a SKD high resolution spectrometer. The effects .of density' hydrogen pellet injection and carbon impurities injected by laser-blow-off on toroidal(V) and poloidal (Vθ)rotation velocity have been observed. The Vθ measured from H. line is only half of that from C Ⅱ impurity line.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0403101).
文摘The optical components of the visible light band are widely used in daily life and industrial development. However due to the serious loss of light and the high cost, the application is limited. The broadband gap metasurface will change this situation due to its low absorption and high efficiency. Herein, we simulate a size-adjustable metasurface of the Al doped ZnO (AZO) nanorod arrays based on finite difference time domain method (FDTD) which can realize the conversion of amplitude polarization and phase in the full visible band. The corresponding theoretical polarization conversion efficiency can reach as high as 91.48% (450 nm), 95.27% (530 nm), and 91.01% (65 nm). The modulation of focusing wavelength can be realized by directly adjusting the height of the AZO nanorod. The designed half-wave plate and metalens can be applied in the imaging power modulation halfwave conversion and enriching the spectroscopy.
文摘Amylose contents in 298 rice samples were determined by conventional method, and a near-infrared spectral model of rice amylose content was established by partial least squares. The calibration determination coefficient (RC) was 0.95; the standard error of calibration (SEC) was 1.58; and the determination coefficient of cross validation (RP) was 0.91, and the standard error of prediction SEP was 1.92. External validation was performed with 20 samples, the predicted values and the determined values were not significantly different, and the correlation coefficient between them was over 95%. The calibration model has good prediction perfor- mance, and could rapidly determine rice amylose content instead of chemical ana- lytical method.
基金Supported by the Talented Young Pressional Foundation of Jilin Province(No 2005123)
文摘Fructus cnidii (Chinese name shechuangzi) is the fruit produced by Cnidium monnieri (L.) Cusson (Umbelliferae). It is a perennial herb that is used to treat skin-related diseases and gynecopathyell. Recent pharmacological studies have revealed crude extracts or components isolated from fructus cnidii possess antiallergic, antipruritic, antidermatophytic, antibacterial, antifungal, and antiosteoporotic activities. Osthole and imperatorin are the major compounds present in shechuangzi. They are often used as standards for the evaluation of the quality of shechuangzi products.
基金The authors thank Qingming Luo's group for providing VCH dataset.This research was supported by the Fundamental Research Funds for the Central Universities (grant No.ZYGX2012J114)the National Natural Science Foundation of China (grant No.61308114)the Specialized Research Fund for the Doctoral Program of Higher Education (grant No.20130185120024).
文摘Modeling Light propagation within human head to deduce spatial sensitivity distribution(SSD)is important for Near-infrared spectroscopy(NIRS)/imaging(NIRI)and diffuse correlation tomography.Lots of head models have been used on this issue,including layered head model,artificial simplified head model,MRI slices described head model,and visible human head model.Hereinto,visible Chinese human(VCH)head model is considered to be a most faithful presentation of anatomical structure,and has been highlighted to be employed in modeling light propagation.However,it is not practical for all researchers to use VCH head models and actually increasing number of people are using magnet resonance imaging(MRI)head models.Here,all the above head models were simulated and compared,and we focused on the effect of using di®erent head models on predictions of SSD.Our results were in line with the previous reports on the effect of cerebral cortex folding geometry.Moreover,the in fluence on SSD increases with thefidelity of head models.And surprisingly,the SSD percentages in scalp and gray matter(region of interest)in MRI head model were found to be 80%and 125%higher than in VCH head model.MRI head models induced nonignorable discrepancy in SSD estimation when compared with VCH head model.This study,as we believe,is the first to focus on comparison among full serials of head model on estimating SSD,and provided quantitative evidence for MRI head model users to calibrate their SSD estimation.
文摘Nanometer zinc oxide was prepared by solid phase reaction. And the ultraviolet visible spectral properties of nanometer zinc oxide colloidal solution dispersed in both water and oil phases were studied. The results show that the absorbance of the colloidal solution to ultraviolet light increases with the decrease of wavelength and reaches about 2.5 at the wavelength of 200 nm. When the mass fraction of nanometer zinc oxide becomes lower, the transmittance of the colloidal solution to visible light gets higher, and it is much higher than that of normal zinc oxide under the same conditions, indicating that nanometer zinc oxide dispersed in both water and oil phases has high transmittance to visible light and good shield to ultraviolet light. Therefore it is suitable for the replacement of organic ultraviolet absorber and titanium dioxide in cosmetics.