In this study, a 2D BiOI nanosheet/1D BiPO4 nanorod/fluorine-doped tin oxide (FTO) composite electrode with a p-n heterojunction structure was prepared by a two-step electrodeposition method. Field-emission scanning e...In this study, a 2D BiOI nanosheet/1D BiPO4 nanorod/fluorine-doped tin oxide (FTO) composite electrode with a p-n heterojunction structure was prepared by a two-step electrodeposition method. Field-emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-visible diffuse reflectance spectroscopy, and electrochemical testing were used to characterize its composition, crystal morphology, and optical properties. The Bi- OI/BiPO4/FTO composite electrode has higher photoelectrocatalytic (PEC) activity for the degradation of tetracycline than pure BiPO4 and BiOI. The PEC activity of the composite was 1.98 times and 2.46 times higher than those of the BiOI/FTO and BiPO4/FTO electrodes, respectively. The effects of the working voltage and BiOI deposition time on the degradation of tetracycline were investigated. The optimum BiOI deposition time was found to be 150 s and the optimum working voltage is 1.2 V. Trapping experiments showed that hydroxyl radicals (·OH) and superoxide radicals (·O2-) are the major reactive species in the PEC degradation process. The BiOI/BiPO4/FTO composite electrode has good stability, and the tetracycline removal efficiency remains substantially unchanged after four cycles in a static system. The reason for the PEC efficiency enhancement in the BiOI/BiPO4/FTO composite electrode is the increased visible light absorption range and the p-n heterojunction structure, which promotes the separation and migration of the photogenerated electrons and holes.展开更多
Photoelectrocatalysis(PEC)is a promising approach that can convert renewable solar energy into chemical energy,while most concern is concentrated on PEC water splitting to obtain high‐value‐added fuel—hydrogen.In p...Photoelectrocatalysis(PEC)is a promising approach that can convert renewable solar energy into chemical energy,while most concern is concentrated on PEC water splitting to obtain high‐value‐added fuel—hydrogen.In practice,more economic benefits can be produced based on PEC technique,such as H_(2)O oxidative H_(2)O_(2) synthesis,organic selective oxidation,organic pollutants degradation and CO_(2) reduction.Although there are plenty of excellent reviews focusing on the PEC water splitting system,the production of various high‐value‐added chemicals in PEC systems has not been discussed synthetically.This Account will focus on the production process of various high‐value‐added chemicals through PEC technology.The photoelectrode design,reaction environment and working mechanisms of PEC systems are also discussed in detail.We believe that this comprehensive Account of the expanded application of photoelectrocatalysis can add an inestimable impetus to the follow‐up development of this technology.展开更多
The high exciton binding energy and lack of a positive oxidation band potential restrict the photocatalytic CO_(2)reduction efficiency of lead-free Bi-based halide perovskites Cs_(3)Bi_(2)X_(9)(X=Br,I).In this study,a...The high exciton binding energy and lack of a positive oxidation band potential restrict the photocatalytic CO_(2)reduction efficiency of lead-free Bi-based halide perovskites Cs_(3)Bi_(2)X_(9)(X=Br,I).In this study,a sequential growth method is presented to prepare a visible-light-driven(λ>420 nm)Z-scheme heterojunction photocatalyst composed of BiVO_(4)nanocrystals decorated on a Cs_(3)Bi_(2)I_(9)nanosheet for photocatalytic CO_(2)reduction coupled with water oxidation.The Cs_(3)Bi_(2)I_(9)/BiVO_(4)Z-scheme heterojunction photocatalyst is stable in the gas-solid photocatalytic CO_(2)reduction system,demonstrating a high visible-light-driven photocatalytic CO_(2)-to-CO production rate of 17.5μmol/(g·h),which is approximately three times that of pristine Cs_(3)Bi_(2)I_(9).The high efficiency of the Cs_(3)Bi_(2)I_(9)/BiVO_(4)heterojunction was attributed to the improved charge separation in Cs_(3)Bi_(2)I_(9).Moreover,the Z-scheme charge-transfer pathway preserves the negative reduction potential of Cs_(3)Bi_(2)I_(9)and the positive oxidation potential of BiVO_()4.This study off ers solid evidence of constructing Z-scheme heterojunctions to improve the photocatalytic performance of lead-free halide perovskites and would inspire more ideas for developing leadfree halide perovskite photocatalysts.展开更多
The low separation efficiency of the photogenerated carrier and the poor activity of the surface redox reaction are the main barrier to further improvement of photocatalytic materials.To address these issues,introduci...The low separation efficiency of the photogenerated carrier and the poor activity of the surface redox reaction are the main barrier to further improvement of photocatalytic materials.To address these issues,introducing spin-polarized electrons in single-component photocatalytic materials emerged as a promising approach.However,the decreased redox ability of photocarriers in these materials becomes a new challenge.Herein,we mitigate this challenge with a carbon nitride sheet(CNs)/graphene nanoribbon(GNR)composite material that has a van der Waals heterostructures(vdWHs)and spin-polarized electron properties.Experimental results and theoretical calculations show that the heterostructure has a strong redox ability,high carrier-separation efficiency,and enhanced surface catalytic reaction.Consequently,the mixed-dimensional CNs/GNR vdWHs exhibit remarkable performance for H_(2)and O_(2)generation as well as CO_(2)production under visible-light irradiation without any cocatalyst.The spin-polarized vdWHs discovered in this study revealed a new type of photocatalytic materials and advanced the development of spintronics and photocatalysis.展开更多
With the significant discharge of antibiotic wastewater into the aquatic and terrestrial ecosystems, antibiotic pollution has become a serious problem and presents a hazardous risk to the environment. To address such ...With the significant discharge of antibiotic wastewater into the aquatic and terrestrial ecosystems, antibiotic pollution has become a serious problem and presents a hazardous risk to the environment. To address such issues, various investigations on the removal of antibiotics have been undertaken. Photocatalysis has received tremendous attention owing to its great potential in removing antibiotics from aqueous solutions via a green, economic, and effective process. However, such a technology employing traditional photocatalysts suffers from major drawbacks such as light absorption being restricted to the UV spectrum only and fast charge recombination. To overcome these issues, considerable effort has been directed towards the development of advanced visible light-driven photocatalysts. This mini review summarises recent research progress in the state-of-the-art design and fabrication of photocatalysts with visible-light response for photocatalytic degradation of antibiotic wastewater. Such design strategies involve the doping of metal and non-metal into ultraviolet light-driven photocatalysts, development of new semiconductor photocatalysts, construction of heterojunction photocatalysts, and fabrication of surface plasmon resonance-enhanced photocatalytic systems. Additionally, some perspectives on the challenges and future developments in the area of photocatalytic degradation of antibiotics are provided.展开更多
Er-doped BiVO4 composite photocatalyst was hydrothermal synthesized and characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray Spectroscopy, X-ray photoelectron spectroscopy, ...Er-doped BiVO4 composite photocatalyst was hydrothermal synthesized and characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray Spectroscopy, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectra techniques. The activity of the catalyst was determined by oxidative decomposition of methyl orange in aqueous solution under visible-light irradiation. X-ray photoelectron spectroscopy and energy-dispersive X-ray Spectroscopy analysis revealed that the doped Er existed in the form of Er2O3. It also showed that the Er doping can enhance the visible-light absorption abilities of catalysts and their visible-light-driven photocatalytic activities in comparison with those of pure BiVO4.展开更多
This work describes the use of TiO_(2)nanotubes-based electrodes(TNT)modified with Cu_(2)O nanostructures and gold nanoparticles for the photoelectroreduction of CO_(2)to produce value-added compounds.A thin layer of ...This work describes the use of TiO_(2)nanotubes-based electrodes(TNT)modified with Cu_(2)O nanostructures and gold nanoparticles for the photoelectroreduction of CO_(2)to produce value-added compounds.A thin layer of polydopamine was used as both an adherent agent and an electron transfer mediator,due to itsπ-conjugated electron system.The highest production yield was achieved using a TNT@PDA/Nc/Au40%electrode,with Faradaic efficiencies of 47.4%(110.5μM cm^(-2))and 27.8%(50.4μM cm^(-2))for methanol and methane,respectively.The performance of the photoelectrodes was shown to be Cu_(2)O facet-dependent,with cubic structures leading to greater conversion of CO_(2)to methanol(43%)and methane(27%),compared to the octahedral morphology,while a higher percentage of metallic gold on the nanostructured Cu_(2)O surface was mainly important for CH4production.Density functional theory(DFT)calculations supported these findings,attributing the superior photoelectrocatalytic performance of the TNT@PDA/Nc/Au40%electrode for CH4generation to the formation of an OCH3intermediate bonded to Au atoms.Studies using isotope-labeling and analysis by gas chromatograph-mass(GC-MS)demonstrated that13CO_(2)was the source for photoelectrocatalytic generation of13CH3OH and13CH313CH2OH.展开更多
基金partly supported by the National Natural Science Foundations of China(21577132)the Fundamental Research Funds for the Central Universities(2652017377,2652017378)~~
文摘In this study, a 2D BiOI nanosheet/1D BiPO4 nanorod/fluorine-doped tin oxide (FTO) composite electrode with a p-n heterojunction structure was prepared by a two-step electrodeposition method. Field-emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-visible diffuse reflectance spectroscopy, and electrochemical testing were used to characterize its composition, crystal morphology, and optical properties. The Bi- OI/BiPO4/FTO composite electrode has higher photoelectrocatalytic (PEC) activity for the degradation of tetracycline than pure BiPO4 and BiOI. The PEC activity of the composite was 1.98 times and 2.46 times higher than those of the BiOI/FTO and BiPO4/FTO electrodes, respectively. The effects of the working voltage and BiOI deposition time on the degradation of tetracycline were investigated. The optimum BiOI deposition time was found to be 150 s and the optimum working voltage is 1.2 V. Trapping experiments showed that hydroxyl radicals (·OH) and superoxide radicals (·O2-) are the major reactive species in the PEC degradation process. The BiOI/BiPO4/FTO composite electrode has good stability, and the tetracycline removal efficiency remains substantially unchanged after four cycles in a static system. The reason for the PEC efficiency enhancement in the BiOI/BiPO4/FTO composite electrode is the increased visible light absorption range and the p-n heterojunction structure, which promotes the separation and migration of the photogenerated electrons and holes.
文摘Photoelectrocatalysis(PEC)is a promising approach that can convert renewable solar energy into chemical energy,while most concern is concentrated on PEC water splitting to obtain high‐value‐added fuel—hydrogen.In practice,more economic benefits can be produced based on PEC technique,such as H_(2)O oxidative H_(2)O_(2) synthesis,organic selective oxidation,organic pollutants degradation and CO_(2) reduction.Although there are plenty of excellent reviews focusing on the PEC water splitting system,the production of various high‐value‐added chemicals in PEC systems has not been discussed synthetically.This Account will focus on the production process of various high‐value‐added chemicals through PEC technology.The photoelectrode design,reaction environment and working mechanisms of PEC systems are also discussed in detail.We believe that this comprehensive Account of the expanded application of photoelectrocatalysis can add an inestimable impetus to the follow‐up development of this technology.
基金support from the National Key R&D Plan Project(No.2022YFA1505000)Prospective Basic Research Projects of CNPC(Nos.2021DQ03(2022Z-29)+4 种基金2022DJ5406,2022DJ5407,2022DJ5408,2022DJ4507,and TGRI-2021-1)the Natural Science Foundation of Shaanxi Province(No.2022JQ-078)the Natural Science Foundation of China(No.52302308)the Outstanding Youth Science Foundation Project of the National Natural Science Foundation of China(Overseas)(No.GYKP033)the Qinchuangyuan Cited High-Level Innovative and Entrepreneurial Talents Project(No.QCYRCXM-2022-143).
文摘The high exciton binding energy and lack of a positive oxidation band potential restrict the photocatalytic CO_(2)reduction efficiency of lead-free Bi-based halide perovskites Cs_(3)Bi_(2)X_(9)(X=Br,I).In this study,a sequential growth method is presented to prepare a visible-light-driven(λ>420 nm)Z-scheme heterojunction photocatalyst composed of BiVO_(4)nanocrystals decorated on a Cs_(3)Bi_(2)I_(9)nanosheet for photocatalytic CO_(2)reduction coupled with water oxidation.The Cs_(3)Bi_(2)I_(9)/BiVO_(4)Z-scheme heterojunction photocatalyst is stable in the gas-solid photocatalytic CO_(2)reduction system,demonstrating a high visible-light-driven photocatalytic CO_(2)-to-CO production rate of 17.5μmol/(g·h),which is approximately three times that of pristine Cs_(3)Bi_(2)I_(9).The high efficiency of the Cs_(3)Bi_(2)I_(9)/BiVO_(4)heterojunction was attributed to the improved charge separation in Cs_(3)Bi_(2)I_(9).Moreover,the Z-scheme charge-transfer pathway preserves the negative reduction potential of Cs_(3)Bi_(2)I_(9)and the positive oxidation potential of BiVO_()4.This study off ers solid evidence of constructing Z-scheme heterojunctions to improve the photocatalytic performance of lead-free halide perovskites and would inspire more ideas for developing leadfree halide perovskite photocatalysts.
基金supported by the National Natural Science Foundation of China(Grant No.12104352 and 51973170)Fundamental Research Funds for the Central Universities(Grant No.XJS212208 and 2020BJ-56)+1 种基金Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(Grant No.2022-K67)the National Natural Science Foundation of Shaanxi Province under Grant No.2019JCW-17 and 2020JCW-15.
文摘The low separation efficiency of the photogenerated carrier and the poor activity of the surface redox reaction are the main barrier to further improvement of photocatalytic materials.To address these issues,introducing spin-polarized electrons in single-component photocatalytic materials emerged as a promising approach.However,the decreased redox ability of photocarriers in these materials becomes a new challenge.Herein,we mitigate this challenge with a carbon nitride sheet(CNs)/graphene nanoribbon(GNR)composite material that has a van der Waals heterostructures(vdWHs)and spin-polarized electron properties.Experimental results and theoretical calculations show that the heterostructure has a strong redox ability,high carrier-separation efficiency,and enhanced surface catalytic reaction.Consequently,the mixed-dimensional CNs/GNR vdWHs exhibit remarkable performance for H_(2)and O_(2)generation as well as CO_(2)production under visible-light irradiation without any cocatalyst.The spin-polarized vdWHs discovered in this study revealed a new type of photocatalytic materials and advanced the development of spintronics and photocatalysis.
基金supported by the National Natural Science Foundation of China(21421001,21276116,21477050,21301076,21303074)Natural Science Foundation of Jiangsu Province(BK20140530,BK20150482)+5 种基金China Postdoctoral Science Foundation(2015M570409)Chinese-German Cooperation Research Project(GZ1091)Program for High-Level Innovative and Entrepreneurial Talents in Jiangsu ProvinceProgram for New Century Excellent Talents in University(NCET-13-0835)Henry Fok Education Foundation(141068)Six Talents Peak Project in Jiangsu Province(XCL-025)~~
文摘With the significant discharge of antibiotic wastewater into the aquatic and terrestrial ecosystems, antibiotic pollution has become a serious problem and presents a hazardous risk to the environment. To address such issues, various investigations on the removal of antibiotics have been undertaken. Photocatalysis has received tremendous attention owing to its great potential in removing antibiotics from aqueous solutions via a green, economic, and effective process. However, such a technology employing traditional photocatalysts suffers from major drawbacks such as light absorption being restricted to the UV spectrum only and fast charge recombination. To overcome these issues, considerable effort has been directed towards the development of advanced visible light-driven photocatalysts. This mini review summarises recent research progress in the state-of-the-art design and fabrication of photocatalysts with visible-light response for photocatalytic degradation of antibiotic wastewater. Such design strategies involve the doping of metal and non-metal into ultraviolet light-driven photocatalysts, development of new semiconductor photocatalysts, construction of heterojunction photocatalysts, and fabrication of surface plasmon resonance-enhanced photocatalytic systems. Additionally, some perspectives on the challenges and future developments in the area of photocatalytic degradation of antibiotics are provided.
文摘Er-doped BiVO4 composite photocatalyst was hydrothermal synthesized and characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray Spectroscopy, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectra techniques. The activity of the catalyst was determined by oxidative decomposition of methyl orange in aqueous solution under visible-light irradiation. X-ray photoelectron spectroscopy and energy-dispersive X-ray Spectroscopy analysis revealed that the doped Er existed in the form of Er2O3. It also showed that the Er doping can enhance the visible-light absorption abilities of catalysts and their visible-light-driven photocatalytic activities in comparison with those of pure BiVO4.
基金FAPESP,Brazil(#2023/10027-5,#2014/50945-4,#2020/15230-5,and#2021/000675-4)CNPq,Brazil(#465571/2014-0,#303269/2021-9,and#307837/2014-9)+6 种基金Instituto Serrapilheira(grant number Serra-2211-41925)FAPEMIG,Brazil(#PPM-00831-15)for support of this workCNPq,Brazil(#105944/2022-0)and PROPEUNESP(13/2022)FAPESP(#2019/00463-7,#2018/22845-6,and#2021/08007-0,respectively)for scholarshipsthe National Institute for Alternative Technologies of Detection,Toxicological Evaluation and Removal of Micropollutants and Radioactives(INCT-DATREM)the support of the Research Centre for Greenhouse Gas Innovation(RCGI),hosted by the University of Sao Paulo(USP)and sponsored by FAPESP and Shell Brasilthe strategic support given by ANP,Brazil(Brazilian National Oil,Natural Gas,and Biofuels Agency)through the R&D levy regulation。
文摘This work describes the use of TiO_(2)nanotubes-based electrodes(TNT)modified with Cu_(2)O nanostructures and gold nanoparticles for the photoelectroreduction of CO_(2)to produce value-added compounds.A thin layer of polydopamine was used as both an adherent agent and an electron transfer mediator,due to itsπ-conjugated electron system.The highest production yield was achieved using a TNT@PDA/Nc/Au40%electrode,with Faradaic efficiencies of 47.4%(110.5μM cm^(-2))and 27.8%(50.4μM cm^(-2))for methanol and methane,respectively.The performance of the photoelectrodes was shown to be Cu_(2)O facet-dependent,with cubic structures leading to greater conversion of CO_(2)to methanol(43%)and methane(27%),compared to the octahedral morphology,while a higher percentage of metallic gold on the nanostructured Cu_(2)O surface was mainly important for CH4production.Density functional theory(DFT)calculations supported these findings,attributing the superior photoelectrocatalytic performance of the TNT@PDA/Nc/Au40%electrode for CH4generation to the formation of an OCH3intermediate bonded to Au atoms.Studies using isotope-labeling and analysis by gas chromatograph-mass(GC-MS)demonstrated that13CO_(2)was the source for photoelectrocatalytic generation of13CH3OH and13CH313CH2OH.