Background Fiber maturity is a key cotton quality property,and its variability in a sample impacts fiber processing and dyeing performance.Currently,the maturity is determined by using established protocols in laborat...Background Fiber maturity is a key cotton quality property,and its variability in a sample impacts fiber processing and dyeing performance.Currently,the maturity is determined by using established protocols in laboratories under a controlled environment.There is an increasing need to measure fiber maturity using low-cost(in general less than $20000)and small portable systems.In this study,a laboratory feasibility was performed to assess the ability of the shortwave infrared hyperspectral imaging(SWIR HSI)technique for determining the conditioned fiber maturity,and as a comparison,a bench-top commercial and expensive(in general greater than $60000)near infrared(NIR)instrument was used.Results Although SWIR HSI and NIR represent different measurement technologies,consistent spectral characteristics were observed between the two instruments when they were used to measure the maturity of the locule fiber samples in seed cotton and of the well-defined fiber samples,respectively.Partial least squares(PLS)models were established using different spectral preprocessing parameters to predict fiber maturity.The high prediction precision was observed by a lower root mean square error of prediction(RMSEP)(<0.046),higher R_(p)^(2)(>0.518),and greater percentage(97.0%)of samples within the 95% agreement range in the entire NIR region(1000-2500 nm)without the moisture band at 1940 nm.Conclusion SWIR HSI has a good potential for assessing cotton fiber maturity in a laboratory environment.展开更多
This review paper reports near-infrared(NIR)imaging studies using a newly-developed NIR camera,Compovision.Compovision can measure a significantly wide area of 150mm×250mm at high speed of between 2and 5s.It enab...This review paper reports near-infrared(NIR)imaging studies using a newly-developed NIR camera,Compovision.Compovision can measure a significantly wide area of 150mm×250mm at high speed of between 2and 5s.It enables a wide spectral region measurement in the 1 000~2 350nm range at 6nm intervals.We investigated the potential of Compovision in the applications to industrial problems such as the evaluation of pharmaceutical tablets and polymers.Our studies have demonstrated that NIR imaging based on Compovision can solve several issues such as long acquisition times and relatively low sensitivity of detection.NIR imaging with Compovision is strongly expected to be applied not only to pharmaceutical tablet monitoring and polymer characterization but also to various applications such as those to food products,biomedical substances and organic and inorganic materials.展开更多
High-end wine brand is made through the use of high-quality grape variety and yeast strain, and through a unique process. Not only is it rich in nutrients, but also it has a unique taste and a fragrant scent. Brand id...High-end wine brand is made through the use of high-quality grape variety and yeast strain, and through a unique process. Not only is it rich in nutrients, but also it has a unique taste and a fragrant scent. Brand identification of wine is difficult and complex because of high similarity. In this paper, visible and near-infrared (NIR) spectroscopy combined with partial least squares discriminant analysis (PLS-DA) was used to explore the feasibility of wine brand identification. Chilean Aoyo wine (2016 vintage) was selected as the identification brand (negative, 100 samples), and various other brands of wine were used as interference brands (positive, 373 samples). Samples of each type were randomly divided into the calibration, prediction and validation sets. For comparison, the PLS-DA models were established in three independent and two complex wavebands of visible (400 - 780 nm), short-NIR (780 - 1100 nm), long-NIR (1100 - 2498 nm), whole NIR (780 - 2498 nm) and whole scanning (400 - 2498 nm). In independent validation, the five models all achieved good discriminant effects. Among them, the visible region model achieved the best effect. The recognition-accuracy rates in validation of negative, positive and total samples achieved 100%, 95.6% and 97.5%, respectively. The results indicated the feasibility of wine brand identification with Vis-NIR spectroscopy.展开更多
In recent decades, functional magnetic resonance imaging (fMRI) has proven to be more effective than the Wada test in the evaluation of language lateralization in special populations such as epileptic patients and chi...In recent decades, functional magnetic resonance imaging (fMRI) has proven to be more effective than the Wada test in the evaluation of language lateralization in special populations such as epileptic patients and children. However, fMRI requires that subjects remain motionless during data acquisition, making the assessment of receptive and expressive language difficult in young children and population with special needs. Near-Infrared spectroscopy (NIRS) is a non- invasive technique that has proven to be more tolerant to motion artifacts. The aim of the present study was to investigate the use of NIRS to assess receptive language patterns using a story listening paradigm. Four native French-speakers listened to stories read aloud by a bilingual speaker in both French and Arabic. To determine if the signal recorded was affected by episodic memory processes, a familiar story and an unknown story were presented. Results showed that listening to stories in French elicited a significantly higher left lateralized response than listening to stories in Arabic, independently of the familiarity of the story. These results confirm that NIRS is a useful non-invasive technique to assess receptive language in adults and can be used to investigate language lateralization among children and epileptic patients slated for epilepsy surgery.展开更多
The penetration behavior of topical substances in the skin not only relates to the transdermal delivery efficiency but also involves the safety and therapeutic effect of topical products,such as sunscreen and hair gro...The penetration behavior of topical substances in the skin not only relates to the transdermal delivery efficiency but also involves the safety and therapeutic effect of topical products,such as sunscreen and hair growth products.Researchers have tried to illustrate the transdermal process with diversified theories and technologies.Directly observing the distribution of topical substances on skin by characteristic imaging is the most convincing approach.Unfortunately,fluorescence labeling imaging,which is commonly used in biochemical research,is limited for transdermal research for most topical substances with a molecular mass less than 500 Da.Label-free imaging technologies possess the advantages of not requiring any macromolecular dyes,no tissue destruction and an extensive substance detection capability,which has enabled rapid development of such technologies in recent years and their introduction to biological tissue analysis,such as skin samples.Through the specific identification of topical substances and endogenous tissue components,label-free imaging technologies can provide abundant tissue distribution information,enrich theoretical and practical guidance for transdermal drug delivery systems.In this review,we expound the mechanisms and applications of the most popular label-free imaging technologies in transdermal research at present,compare their advantages and disadvantages,and forecast development prospects.展开更多
基金supported partially by the USDA-ARS Research Project#6054-44000-080-00D.
文摘Background Fiber maturity is a key cotton quality property,and its variability in a sample impacts fiber processing and dyeing performance.Currently,the maturity is determined by using established protocols in laboratories under a controlled environment.There is an increasing need to measure fiber maturity using low-cost(in general less than $20000)and small portable systems.In this study,a laboratory feasibility was performed to assess the ability of the shortwave infrared hyperspectral imaging(SWIR HSI)technique for determining the conditioned fiber maturity,and as a comparison,a bench-top commercial and expensive(in general greater than $60000)near infrared(NIR)instrument was used.Results Although SWIR HSI and NIR represent different measurement technologies,consistent spectral characteristics were observed between the two instruments when they were used to measure the maturity of the locule fiber samples in seed cotton and of the well-defined fiber samples,respectively.Partial least squares(PLS)models were established using different spectral preprocessing parameters to predict fiber maturity.The high prediction precision was observed by a lower root mean square error of prediction(RMSEP)(<0.046),higher R_(p)^(2)(>0.518),and greater percentage(97.0%)of samples within the 95% agreement range in the entire NIR region(1000-2500 nm)without the moisture band at 1940 nm.Conclusion SWIR HSI has a good potential for assessing cotton fiber maturity in a laboratory environment.
文摘This review paper reports near-infrared(NIR)imaging studies using a newly-developed NIR camera,Compovision.Compovision can measure a significantly wide area of 150mm×250mm at high speed of between 2and 5s.It enables a wide spectral region measurement in the 1 000~2 350nm range at 6nm intervals.We investigated the potential of Compovision in the applications to industrial problems such as the evaluation of pharmaceutical tablets and polymers.Our studies have demonstrated that NIR imaging based on Compovision can solve several issues such as long acquisition times and relatively low sensitivity of detection.NIR imaging with Compovision is strongly expected to be applied not only to pharmaceutical tablet monitoring and polymer characterization but also to various applications such as those to food products,biomedical substances and organic and inorganic materials.
文摘High-end wine brand is made through the use of high-quality grape variety and yeast strain, and through a unique process. Not only is it rich in nutrients, but also it has a unique taste and a fragrant scent. Brand identification of wine is difficult and complex because of high similarity. In this paper, visible and near-infrared (NIR) spectroscopy combined with partial least squares discriminant analysis (PLS-DA) was used to explore the feasibility of wine brand identification. Chilean Aoyo wine (2016 vintage) was selected as the identification brand (negative, 100 samples), and various other brands of wine were used as interference brands (positive, 373 samples). Samples of each type were randomly divided into the calibration, prediction and validation sets. For comparison, the PLS-DA models were established in three independent and two complex wavebands of visible (400 - 780 nm), short-NIR (780 - 1100 nm), long-NIR (1100 - 2498 nm), whole NIR (780 - 2498 nm) and whole scanning (400 - 2498 nm). In independent validation, the five models all achieved good discriminant effects. Among them, the visible region model achieved the best effect. The recognition-accuracy rates in validation of negative, positive and total samples achieved 100%, 95.6% and 97.5%, respectively. The results indicated the feasibility of wine brand identification with Vis-NIR spectroscopy.
文摘In recent decades, functional magnetic resonance imaging (fMRI) has proven to be more effective than the Wada test in the evaluation of language lateralization in special populations such as epileptic patients and children. However, fMRI requires that subjects remain motionless during data acquisition, making the assessment of receptive and expressive language difficult in young children and population with special needs. Near-Infrared spectroscopy (NIRS) is a non- invasive technique that has proven to be more tolerant to motion artifacts. The aim of the present study was to investigate the use of NIRS to assess receptive language patterns using a story listening paradigm. Four native French-speakers listened to stories read aloud by a bilingual speaker in both French and Arabic. To determine if the signal recorded was affected by episodic memory processes, a familiar story and an unknown story were presented. Results showed that listening to stories in French elicited a significantly higher left lateralized response than listening to stories in Arabic, independently of the familiarity of the story. These results confirm that NIRS is a useful non-invasive technique to assess receptive language in adults and can be used to investigate language lateralization among children and epileptic patients slated for epilepsy surgery.
文摘The penetration behavior of topical substances in the skin not only relates to the transdermal delivery efficiency but also involves the safety and therapeutic effect of topical products,such as sunscreen and hair growth products.Researchers have tried to illustrate the transdermal process with diversified theories and technologies.Directly observing the distribution of topical substances on skin by characteristic imaging is the most convincing approach.Unfortunately,fluorescence labeling imaging,which is commonly used in biochemical research,is limited for transdermal research for most topical substances with a molecular mass less than 500 Da.Label-free imaging technologies possess the advantages of not requiring any macromolecular dyes,no tissue destruction and an extensive substance detection capability,which has enabled rapid development of such technologies in recent years and their introduction to biological tissue analysis,such as skin samples.Through the specific identification of topical substances and endogenous tissue components,label-free imaging technologies can provide abundant tissue distribution information,enrich theoretical and practical guidance for transdermal drug delivery systems.In this review,we expound the mechanisms and applications of the most popular label-free imaging technologies in transdermal research at present,compare their advantages and disadvantages,and forecast development prospects.