Visnagin is a furanochromone and one of the most important compound in the Ammi visnaga(L.)Lam(a synonym of Visnaga daucoides Gaertn.)plant,which is used to cure various ailments.Many investigations into the bioactive...Visnagin is a furanochromone and one of the most important compound in the Ammi visnaga(L.)Lam(a synonym of Visnaga daucoides Gaertn.)plant,which is used to cure various ailments.Many investigations into the bioactive properties of visnagin have been studied to date.The literature on visnagin demonstrates its biological properties,including anti-inflammatory,anti-diabetic,and beneficial effects in cardiovascular and renal diseases.Moreover,visnagin improves sperm quality parameters,stimulates steroidogenesis,and increases serum gonadotropins and testosterone levels,while decreasing proinflammatory cytokines,oxidative damage,genomic instability,and it modulates apoptosis.Thus,visnagin has emerged as an exciting lead for further research,owing to its potential in various unmet clinical needs.The current review summarized its basic structure,pharmacokinetics,and pharmacological effects,focusing on its mechanisms of action.The review will help to understand the potential of visnagin as an alternative treatment strategy for several diseases and provide insight into research topics that need further exploration for visnagin’s safe clinical use.展开更多
Aedes aegypti mosquitoes are responsible for transmission of many viral diseases, such as Zika fever, dengue fever, yellow fever, and chikungunya. Emergence of resistance to currently used pesticides among mosquitoes ...Aedes aegypti mosquitoes are responsible for transmission of many viral diseases, such as Zika fever, dengue fever, yellow fever, and chikungunya. Emergence of resistance to currently used pesticides among mosquitoes has increased the importance for the search for novel mosquito control agents. Natural products, particularly plant and microbe derived secondary metabolites, are good sources in the search for such compounds. Ammi visnaga (Lam.) Lamarck is a plant in the Apiaceae family native to North Africa, Europe, and Asia. In the search for environmentally benign and effective insecticides as part of an ongoing joint effort between the USDA (US Department of Agriculture) and the DWFP (Deployed War Fighter Protection) program sponsored by the Department of Defense, we have investigated ethyl acetate extract of A. visnaga seeds. Two furanochromones, khellin and visnagin that exhibited larvicide activity against Aedes aegypti mosquito larvae were isolated from the ethyl acetate extract of the seeds by bioassay-guided fractionation. This is the first report of mosquito larvicidal activity of khellin and visnagin.展开更多
Trichoplusia ni caterpillars are polyphagous foliage-feeders and rarely likely to encounter aflatoxin B1 (AFB1), a mycotoxin produced by Aspergillus flavus and A. parasiticus, in their host plants. To determine how ...Trichoplusia ni caterpillars are polyphagous foliage-feeders and rarely likely to encounter aflatoxin B1 (AFB1), a mycotoxin produced by Aspergillus flavus and A. parasiticus, in their host plants. To determine how T. ni copes with AFB 1, we evaluated the toxicity ofAFB 1 to T. ni caterpillars at different developmental stages and found that AFB 1 tolerance significantly increases with larval development. Diet incorporation of AFB 1 at 1μg/g completely inhibited larval growth and pupation of newly hatched larvae, but 3μg/g AFB 1 did not have apparent toxic effects on larval growth and pupation of caterpillars that first consume this compound 10 days after hatching. Piperonyl butoxide, a general inhibitor of cytochrome P450 monooxygenases (P450s), reduced the toxicity of AFB 1, suggesting that AFB1 is bioactivated in T. ni and this bioactivation is mediated by P450s. Some plant allelochemicals, including flavonoids such as fiavones, furanocoumarins such as xanthotoxin and imperatorin, and furanochromones such as visnagin, that induce P450s in other lepidopteran larvae ameliorated AFBI toxicity, suggesting that P450s are also involved in AFB 1 detoxification in T. ni.展开更多
文摘Visnagin is a furanochromone and one of the most important compound in the Ammi visnaga(L.)Lam(a synonym of Visnaga daucoides Gaertn.)plant,which is used to cure various ailments.Many investigations into the bioactive properties of visnagin have been studied to date.The literature on visnagin demonstrates its biological properties,including anti-inflammatory,anti-diabetic,and beneficial effects in cardiovascular and renal diseases.Moreover,visnagin improves sperm quality parameters,stimulates steroidogenesis,and increases serum gonadotropins and testosterone levels,while decreasing proinflammatory cytokines,oxidative damage,genomic instability,and it modulates apoptosis.Thus,visnagin has emerged as an exciting lead for further research,owing to its potential in various unmet clinical needs.The current review summarized its basic structure,pharmacokinetics,and pharmacological effects,focusing on its mechanisms of action.The review will help to understand the potential of visnagin as an alternative treatment strategy for several diseases and provide insight into research topics that need further exploration for visnagin’s safe clinical use.
文摘Aedes aegypti mosquitoes are responsible for transmission of many viral diseases, such as Zika fever, dengue fever, yellow fever, and chikungunya. Emergence of resistance to currently used pesticides among mosquitoes has increased the importance for the search for novel mosquito control agents. Natural products, particularly plant and microbe derived secondary metabolites, are good sources in the search for such compounds. Ammi visnaga (Lam.) Lamarck is a plant in the Apiaceae family native to North Africa, Europe, and Asia. In the search for environmentally benign and effective insecticides as part of an ongoing joint effort between the USDA (US Department of Agriculture) and the DWFP (Deployed War Fighter Protection) program sponsored by the Department of Defense, we have investigated ethyl acetate extract of A. visnaga seeds. Two furanochromones, khellin and visnagin that exhibited larvicide activity against Aedes aegypti mosquito larvae were isolated from the ethyl acetate extract of the seeds by bioassay-guided fractionation. This is the first report of mosquito larvicidal activity of khellin and visnagin.
文摘Trichoplusia ni caterpillars are polyphagous foliage-feeders and rarely likely to encounter aflatoxin B1 (AFB1), a mycotoxin produced by Aspergillus flavus and A. parasiticus, in their host plants. To determine how T. ni copes with AFB 1, we evaluated the toxicity ofAFB 1 to T. ni caterpillars at different developmental stages and found that AFB 1 tolerance significantly increases with larval development. Diet incorporation of AFB 1 at 1μg/g completely inhibited larval growth and pupation of newly hatched larvae, but 3μg/g AFB 1 did not have apparent toxic effects on larval growth and pupation of caterpillars that first consume this compound 10 days after hatching. Piperonyl butoxide, a general inhibitor of cytochrome P450 monooxygenases (P450s), reduced the toxicity of AFB 1, suggesting that AFB1 is bioactivated in T. ni and this bioactivation is mediated by P450s. Some plant allelochemicals, including flavonoids such as fiavones, furanocoumarins such as xanthotoxin and imperatorin, and furanochromones such as visnagin, that induce P450s in other lepidopteran larvae ameliorated AFBI toxicity, suggesting that P450s are also involved in AFB 1 detoxification in T. ni.