This research is framed within the affective computing, which explains the importance of emotions in human cognition (decision making, perception, interaction and human intelligence). Applying this approach to a pedag...This research is framed within the affective computing, which explains the importance of emotions in human cognition (decision making, perception, interaction and human intelligence). Applying this approach to a pedagogical agent is an essential part to enhance the effectiveness of the teaching-learning process of an intelligent learning system. This work focuses on the design of the inference engine that will give life to the interface, where the latter is represented by a pedagogical agent. The inference engine is based on an affective-motivational model. This model is implemented by using artificial intelligence technique called fuzzy cognitive maps.展开更多
针对目前智能体间追逐过程中对智能体的情感因素考虑不充分的问题,提出一种新的解决方案:首先通过情感建模将个性、情感融入以两个智能体为基元的追逐行为中,使其运动更有多样性;其次通过博弈论引导决策的选取;最后收集对方运动的轨迹点...针对目前智能体间追逐过程中对智能体的情感因素考虑不充分的问题,提出一种新的解决方案:首先通过情感建模将个性、情感融入以两个智能体为基元的追逐行为中,使其运动更有多样性;其次通过博弈论引导决策的选取;最后收集对方运动的轨迹点,用Q-learning加强学习方式学习归纳,以寻找最优追逐运动路径。在Visual Studio 2012编译环境下得到整个具有可信度的运动动画以及智能体的情感、体力等因素的变化规律图像。演示结果表明,此解决方案对于智能体间高效的追逐有很好的促进作用。展开更多
文摘This research is framed within the affective computing, which explains the importance of emotions in human cognition (decision making, perception, interaction and human intelligence). Applying this approach to a pedagogical agent is an essential part to enhance the effectiveness of the teaching-learning process of an intelligent learning system. This work focuses on the design of the inference engine that will give life to the interface, where the latter is represented by a pedagogical agent. The inference engine is based on an affective-motivational model. This model is implemented by using artificial intelligence technique called fuzzy cognitive maps.
文摘针对目前智能体间追逐过程中对智能体的情感因素考虑不充分的问题,提出一种新的解决方案:首先通过情感建模将个性、情感融入以两个智能体为基元的追逐行为中,使其运动更有多样性;其次通过博弈论引导决策的选取;最后收集对方运动的轨迹点,用Q-learning加强学习方式学习归纳,以寻找最优追逐运动路径。在Visual Studio 2012编译环境下得到整个具有可信度的运动动画以及智能体的情感、体力等因素的变化规律图像。演示结果表明,此解决方案对于智能体间高效的追逐有很好的促进作用。