Visual odometry is critical in visual simultaneous localization and mapping for robot navigation.However,the pose estimation performance of most current visual odometry algorithms degrades in scenes with unevenly dist...Visual odometry is critical in visual simultaneous localization and mapping for robot navigation.However,the pose estimation performance of most current visual odometry algorithms degrades in scenes with unevenly distributed features because dense features occupy excessive weight.Herein,a new human visual attention mechanism for point-and-line stereo visual odometry,which is called point-line-weight-mechanism visual odometry(PLWM-VO),is proposed to describe scene features in a global and balanced manner.A weight-adaptive model based on region partition and region growth is generated for the human visual attention mechanism,where sufficient attention is assigned to position-distinctive objects(sparse features in the environment).Furthermore,the sum of absolute differences algorithm is used to improve the accuracy of initialization for line features.Compared with the state-of-the-art method(ORB-VO),PLWM-VO show a 36.79%reduction in the absolute trajectory error on the Kitti and Euroc datasets.Although the time consumption of PLWM-VO is higher than that of ORB-VO,online test results indicate that PLWM-VO satisfies the real-time demand.The proposed algorithm not only significantly promotes the environmental adaptability of visual odometry,but also quantitatively demonstrates the superiority of the human visual attention mechanism.展开更多
U-Net has achieved good performance with the small-scale datasets through skip connections to merge the features of the low-level layers and high-level layers and has been widely utilized in biomedical image segmentat...U-Net has achieved good performance with the small-scale datasets through skip connections to merge the features of the low-level layers and high-level layers and has been widely utilized in biomedical image segmentation as well as recent microstructure image segregation of the materials.Three representative visual attention mechanism modules,named as squeeze-and-excitation networks,convolutional block attention module,and extended calibration algorithm,were intro-duced into the traditional U-Net architecture to further improve the prediction accuracy.It is found that compared with the original U-Net architecture,the evaluation index of the improved U-Net architecture has been significantly improved for the microstructure segmentation of the steels with the ferrite/martensite composite microstructure and pearlite/ferrite composite microstructure and the complex martensite/austenite island/bainite microstructure,which demonstrates the advantages of the utilization of the visual attention mechanism in the microstructure segregation.The reasons for the accuracy improvement were discussed based on the feature maps analysis.展开更多
基金Supported by Tianjin Municipal Natural Science Foundation of China(Grant No.19JCJQJC61600)Hebei Provincial Natural Science Foundation of China(Grant Nos.F2020202051,F2020202053).
文摘Visual odometry is critical in visual simultaneous localization and mapping for robot navigation.However,the pose estimation performance of most current visual odometry algorithms degrades in scenes with unevenly distributed features because dense features occupy excessive weight.Herein,a new human visual attention mechanism for point-and-line stereo visual odometry,which is called point-line-weight-mechanism visual odometry(PLWM-VO),is proposed to describe scene features in a global and balanced manner.A weight-adaptive model based on region partition and region growth is generated for the human visual attention mechanism,where sufficient attention is assigned to position-distinctive objects(sparse features in the environment).Furthermore,the sum of absolute differences algorithm is used to improve the accuracy of initialization for line features.Compared with the state-of-the-art method(ORB-VO),PLWM-VO show a 36.79%reduction in the absolute trajectory error on the Kitti and Euroc datasets.Although the time consumption of PLWM-VO is higher than that of ORB-VO,online test results indicate that PLWM-VO satisfies the real-time demand.The proposed algorithm not only significantly promotes the environmental adaptability of visual odometry,but also quantitatively demonstrates the superiority of the human visual attention mechanism.
基金support from National Natural Science Foundation of China(Nos.52071238 and U20A20279)National Key Research and Development Program of China(2022YFB3706701)the 111 Project(No.D18018)。
文摘U-Net has achieved good performance with the small-scale datasets through skip connections to merge the features of the low-level layers and high-level layers and has been widely utilized in biomedical image segmentation as well as recent microstructure image segregation of the materials.Three representative visual attention mechanism modules,named as squeeze-and-excitation networks,convolutional block attention module,and extended calibration algorithm,were intro-duced into the traditional U-Net architecture to further improve the prediction accuracy.It is found that compared with the original U-Net architecture,the evaluation index of the improved U-Net architecture has been significantly improved for the microstructure segmentation of the steels with the ferrite/martensite composite microstructure and pearlite/ferrite composite microstructure and the complex martensite/austenite island/bainite microstructure,which demonstrates the advantages of the utilization of the visual attention mechanism in the microstructure segregation.The reasons for the accuracy improvement were discussed based on the feature maps analysis.