Applying machine learning to lemon defect recognition can improve the efficiency of lemon quality detection. This paper proposes a deep learning-based classification method with visual feature extraction and transfer ...Applying machine learning to lemon defect recognition can improve the efficiency of lemon quality detection. This paper proposes a deep learning-based classification method with visual feature extraction and transfer learning to recognize defect lemons (</span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;">, green and mold defects). First, the data enhancement and brightness compensation techniques are used for data prepossessing. The visual feature extraction is used to quantify the defects and determine the feature variables as the bandit basis for classification. Then we construct a convolutional neural network with an embedded Visual Geome</span><span style="font-family:Verdana;">try Group 16 based (VGG16-based) network using transfer learning. The proposed model is compared with many benchmark models such as</span><span style="font-family:Verdana;"> K-</span></span><span style="font-family:Verdana;">n</span><span style="font-family:Verdana;">earest</span><span style="font-family:""> </span><span style="font-family:Verdana;">Neighbor (KNN) and Support Vector Machine (SVM). Result</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> show that the proposed model achieves the highest accuracy (95.44%) in the testing data set. The research provides a new solution for lemon defect recognition.展开更多
The rapid growth of multimedia content necessitates powerful technologies to filter, classify, index and retrieve video documents more efficiently. However, the essential bottleneck of image and video analysis is the ...The rapid growth of multimedia content necessitates powerful technologies to filter, classify, index and retrieve video documents more efficiently. However, the essential bottleneck of image and video analysis is the problem of semantic gap that low level features extracted by computers always fail to coincide with high-level concepts interpreted by humans. In this paper, we present a generic scheme for the detection video semantic concepts based on multiple visual features machine learning. Various global and local low-level visual features are systelrtically investigated, and kernelbased learning method equips the concept detection system to explore the potential of these features. Then we combine the different features and sub-systen on both classifier-level and kernel-level fusion that contribute to a more robust system Our proposed system is tested on the TRECVID dataset. The resulted Mean Average Precision (MAP) score is rmch better than the benchmark perforrmnce, which proves that our concepts detection engine develops a generic model and perforrrs well on both object and scene type concepts.展开更多
Objective image quality assessment(IQA)plays an important role in various visual communication systems,which can automatically and efficiently predict the perceived quality of images.The human eye is the ultimate eval...Objective image quality assessment(IQA)plays an important role in various visual communication systems,which can automatically and efficiently predict the perceived quality of images.The human eye is the ultimate evaluator for visual experience,thus the modeling of human visual system(HVS)is a core issue for objective IQA and visual experience optimization.The traditional model based on black box fitting has low interpretability and it is difficult to guide the experience optimization effectively,while the model based on physiological simulation is hard to integrate into practical visual communication services due to its high computational complexity.For bridging the gap between signal distortion and visual experience,in this paper,we propose a novel perceptual no-reference(NR)IQA algorithm based on structural computational modeling of HVS.According to the mechanism of the human brain,we divide the visual signal processing into a low-level visual layer,a middle-level visual layer and a high-level visual layer,which conduct pixel information processing,primitive information processing and global image information processing,respectively.The natural scene statistics(NSS)based features,deep features and free-energy based features are extracted from these three layers.The support vector regression(SVR)is employed to aggregate features to the final quality prediction.Extensive experimental comparisons on three widely used benchmark IQA databases(LIVE,CSIQ and TID2013)demonstrate that our proposed metric is highly competitive with or outperforms the state-of-the-art NR IQA measures.展开更多
文摘Applying machine learning to lemon defect recognition can improve the efficiency of lemon quality detection. This paper proposes a deep learning-based classification method with visual feature extraction and transfer learning to recognize defect lemons (</span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;">, green and mold defects). First, the data enhancement and brightness compensation techniques are used for data prepossessing. The visual feature extraction is used to quantify the defects and determine the feature variables as the bandit basis for classification. Then we construct a convolutional neural network with an embedded Visual Geome</span><span style="font-family:Verdana;">try Group 16 based (VGG16-based) network using transfer learning. The proposed model is compared with many benchmark models such as</span><span style="font-family:Verdana;"> K-</span></span><span style="font-family:Verdana;">n</span><span style="font-family:Verdana;">earest</span><span style="font-family:""> </span><span style="font-family:Verdana;">Neighbor (KNN) and Support Vector Machine (SVM). Result</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> show that the proposed model achieves the highest accuracy (95.44%) in the testing data set. The research provides a new solution for lemon defect recognition.
基金Acknowledgements This paper was supported by the coUabomtive Research Project SEV under Cant No. 01100474 between Beijing University of Posts and Telecorrrcnications and France Telecom R&D Beijing the National Natural Science Foundation of China under Cant No. 90920001 the Caduate Innovation Fund of SICE, BUPT, 2011.
文摘The rapid growth of multimedia content necessitates powerful technologies to filter, classify, index and retrieve video documents more efficiently. However, the essential bottleneck of image and video analysis is the problem of semantic gap that low level features extracted by computers always fail to coincide with high-level concepts interpreted by humans. In this paper, we present a generic scheme for the detection video semantic concepts based on multiple visual features machine learning. Various global and local low-level visual features are systelrtically investigated, and kernelbased learning method equips the concept detection system to explore the potential of these features. Then we combine the different features and sub-systen on both classifier-level and kernel-level fusion that contribute to a more robust system Our proposed system is tested on the TRECVID dataset. The resulted Mean Average Precision (MAP) score is rmch better than the benchmark perforrmnce, which proves that our concepts detection engine develops a generic model and perforrrs well on both object and scene type concepts.
基金This work was supported by National Natural Science Foundation of China(Nos.61831015 and 61901260)Key Research and Development Program of China(No.2019YFB1405902).
文摘Objective image quality assessment(IQA)plays an important role in various visual communication systems,which can automatically and efficiently predict the perceived quality of images.The human eye is the ultimate evaluator for visual experience,thus the modeling of human visual system(HVS)is a core issue for objective IQA and visual experience optimization.The traditional model based on black box fitting has low interpretability and it is difficult to guide the experience optimization effectively,while the model based on physiological simulation is hard to integrate into practical visual communication services due to its high computational complexity.For bridging the gap between signal distortion and visual experience,in this paper,we propose a novel perceptual no-reference(NR)IQA algorithm based on structural computational modeling of HVS.According to the mechanism of the human brain,we divide the visual signal processing into a low-level visual layer,a middle-level visual layer and a high-level visual layer,which conduct pixel information processing,primitive information processing and global image information processing,respectively.The natural scene statistics(NSS)based features,deep features and free-energy based features are extracted from these three layers.The support vector regression(SVR)is employed to aggregate features to the final quality prediction.Extensive experimental comparisons on three widely used benchmark IQA databases(LIVE,CSIQ and TID2013)demonstrate that our proposed metric is highly competitive with or outperforms the state-of-the-art NR IQA measures.