In visible light positioning systems,some scholars have proposed target tracking algorithms to balance the relationship among positioning accuracy,real-time performance,and robustness.However,there are still two probl...In visible light positioning systems,some scholars have proposed target tracking algorithms to balance the relationship among positioning accuracy,real-time performance,and robustness.However,there are still two problems:(1)When the captured LED disappears and the uncertain LED reappears,existing tracking algorithms may recognize the landmark in error;(2)The receiver is not always able to achieve positioning under various moving statuses.In this paper,we propose an enhanced visual target tracking algorithm to solve the above problems.First,we design the lightweight recognition/demodulation mechanism,which combines Kalman filtering with simple image preprocessing to quickly track and accurately demodulate the landmark.Then,we use the Gaussian mixture model and the LED color feature to enable the system to achieve positioning,when the receiver is under various moving statuses.Experimental results show that our system can achieve high-precision dynamic positioning and improve the system’s comprehensive performance.展开更多
Target tracking is one typical application of visual servoing technology. It is still a difficult task to track high speed target with current visual servo system. The improvement of visual servoing scheme is strongly...Target tracking is one typical application of visual servoing technology. It is still a difficult task to track high speed target with current visual servo system. The improvement of visual servoing scheme is strongly required. A position-based visual servo parallel system is presented for tracking target with high speed. A local Frenet frame is assigned to the sampling point of spatial trajectory. Position estimation is formed by the differential features of intrinsic geometry, and orientation estimation is formed by homogenous transformation. The time spent for searching and processing can be greatly reduced by shifting the window according to features location prediction. The simulation results have demonstrated the ability of the system to track spatial moving object.展开更多
基金supported by the Guangdong Basic and Applied Basic Research Foundation No.2021A1515110958National Natural Science Foundation of China No.62202215+1 种基金SYLU introduced high-level talents scientific research support plan,Chongqing University Innovation Research Group(CXQT21019)Chongqing Talents Project(CQYC201903048)。
文摘In visible light positioning systems,some scholars have proposed target tracking algorithms to balance the relationship among positioning accuracy,real-time performance,and robustness.However,there are still two problems:(1)When the captured LED disappears and the uncertain LED reappears,existing tracking algorithms may recognize the landmark in error;(2)The receiver is not always able to achieve positioning under various moving statuses.In this paper,we propose an enhanced visual target tracking algorithm to solve the above problems.First,we design the lightweight recognition/demodulation mechanism,which combines Kalman filtering with simple image preprocessing to quickly track and accurately demodulate the landmark.Then,we use the Gaussian mixture model and the LED color feature to enable the system to achieve positioning,when the receiver is under various moving statuses.Experimental results show that our system can achieve high-precision dynamic positioning and improve the system’s comprehensive performance.
基金This project is supported by National Electric Power Corporation Foundation of China(No.SPKJ010-27).
文摘Target tracking is one typical application of visual servoing technology. It is still a difficult task to track high speed target with current visual servo system. The improvement of visual servoing scheme is strongly required. A position-based visual servo parallel system is presented for tracking target with high speed. A local Frenet frame is assigned to the sampling point of spatial trajectory. Position estimation is formed by the differential features of intrinsic geometry, and orientation estimation is formed by homogenous transformation. The time spent for searching and processing can be greatly reduced by shifting the window according to features location prediction. The simulation results have demonstrated the ability of the system to track spatial moving object.