Recent studies describe a number of difficulties associated with attention deficit in children with reading disabilities. Information about visual-spatial attention mainly arises from studies using event-related poten...Recent studies describe a number of difficulties associated with attention deficit in children with reading disabilities. Information about visual-spatial attention mainly arises from studies using event-related potentials (ERPs) during Posner’s spatial cueing paradigm. This study aims to use neurofeedback with a special protocol for treating children with reading disabilities, and moreo-ver, to evaluate visual-spatial attention ability by means of Posner paradigm task and ERPs. The study was conducted in a single subject design in 20 sessions. Participants were 2 male children, aged between 10 - 12 years old, who completed twelve 30-min neurofeedback sessions. Repeated measurements were performed during the baseline, treatment, and post treatment phases. Results showed some improvement in Posner paradigm parameters (correct response, valid and invalid reaction times). Furthermore, grand average ERPs for both of the participants in each of the four conditions (Valid-right, Invalid-right, Valid-left and Invalid-left) were analyzed. The analysis of P3 component showed a reduction in latency, indicating an improvement in the timing of cognitive processes. In addition, the graphs showed a decrease in amplitude level, which meant easier processing than before.展开更多
提出一种基于SABO-GRU-Attention(subtraction average based optimizer-gate recurrent unitattention)的锂电池SOC(state of charge)估计方法。采用基于平均减法优化算法自适应更新GRU神经网络的超参数,融合SE(squeeze and excitation...提出一种基于SABO-GRU-Attention(subtraction average based optimizer-gate recurrent unitattention)的锂电池SOC(state of charge)估计方法。采用基于平均减法优化算法自适应更新GRU神经网络的超参数,融合SE(squeeze and excitation)注意力机制自适应分配各通道权重,提高学习效率。对马里兰大学电池数据集进行预处理,输入电压、电流参数,进行锂电池充放电仿真实验,并搭建锂电池荷电状态实验平台进行储能锂电池充放电实验。结果表明,提出的SOC神经网络估计模型明显优于LSTM、GRU以及PSO-GRU等模型,具有较高的估计精度与应用价值。展开更多
针对现有的数字化档案多标签分类方法存在分类标签之间缺少关联性的问题,提出一种用于档案多标签分类的深层神经网络模型ALBERT-Seq2Seq-Attention.该模型通过ALBERT(A Little BERT)预训练语言模型内部多层双向的Transfomer结构获取进...针对现有的数字化档案多标签分类方法存在分类标签之间缺少关联性的问题,提出一种用于档案多标签分类的深层神经网络模型ALBERT-Seq2Seq-Attention.该模型通过ALBERT(A Little BERT)预训练语言模型内部多层双向的Transfomer结构获取进行文本特征向量的提取,并获得上下文语义信息;将预训练提取的文本特征作为Seq2Seq-Attention(Sequence to Sequence-Attention)模型的输入序列,构建标签字典以获取多标签间的关联关系.将分类模型在3种数据集上分别进行对比实验,结果表明:模型分类的效果F1值均超过90%.该模型不仅能提高档案文本的多标签分类效果,也能关注标签之间的相关关系.展开更多
文摘Recent studies describe a number of difficulties associated with attention deficit in children with reading disabilities. Information about visual-spatial attention mainly arises from studies using event-related potentials (ERPs) during Posner’s spatial cueing paradigm. This study aims to use neurofeedback with a special protocol for treating children with reading disabilities, and moreo-ver, to evaluate visual-spatial attention ability by means of Posner paradigm task and ERPs. The study was conducted in a single subject design in 20 sessions. Participants were 2 male children, aged between 10 - 12 years old, who completed twelve 30-min neurofeedback sessions. Repeated measurements were performed during the baseline, treatment, and post treatment phases. Results showed some improvement in Posner paradigm parameters (correct response, valid and invalid reaction times). Furthermore, grand average ERPs for both of the participants in each of the four conditions (Valid-right, Invalid-right, Valid-left and Invalid-left) were analyzed. The analysis of P3 component showed a reduction in latency, indicating an improvement in the timing of cognitive processes. In addition, the graphs showed a decrease in amplitude level, which meant easier processing than before.
文摘提出一种基于SABO-GRU-Attention(subtraction average based optimizer-gate recurrent unitattention)的锂电池SOC(state of charge)估计方法。采用基于平均减法优化算法自适应更新GRU神经网络的超参数,融合SE(squeeze and excitation)注意力机制自适应分配各通道权重,提高学习效率。对马里兰大学电池数据集进行预处理,输入电压、电流参数,进行锂电池充放电仿真实验,并搭建锂电池荷电状态实验平台进行储能锂电池充放电实验。结果表明,提出的SOC神经网络估计模型明显优于LSTM、GRU以及PSO-GRU等模型,具有较高的估计精度与应用价值。
文摘针对现有的数字化档案多标签分类方法存在分类标签之间缺少关联性的问题,提出一种用于档案多标签分类的深层神经网络模型ALBERT-Seq2Seq-Attention.该模型通过ALBERT(A Little BERT)预训练语言模型内部多层双向的Transfomer结构获取进行文本特征向量的提取,并获得上下文语义信息;将预训练提取的文本特征作为Seq2Seq-Attention(Sequence to Sequence-Attention)模型的输入序列,构建标签字典以获取多标签间的关联关系.将分类模型在3种数据集上分别进行对比实验,结果表明:模型分类的效果F1值均超过90%.该模型不仅能提高档案文本的多标签分类效果,也能关注标签之间的相关关系.