With the development of virtual reality application in the medical field, two-dimensional medical image of the three-dimensional visualization technology made possible. Surgery gets into minimally invasive operation m...With the development of virtual reality application in the medical field, two-dimensional medical image of the three-dimensional visualization technology made possible. Surgery gets into minimally invasive operation microscopy Era, and gradually becomes a new research hotspot. This paper studies the realization of two-dimensional medical im-age 3D reconstruction visualization system method, and the overall process and management module. Using the main technology of VTK (The Visualization Toolkit) to achieve a two-dimensional medical image three-dimensional visua-lization system, which can help the physician to obtain help clinical diagnosis Information and play an important role in treatment, accurate positioning in diseased tissue and tumor early diagnosis.展开更多
Computing systems have been playing an important role in various medical fields, notably in image diagnosis. Studies in the field of Computational Vision aim at developing techniques and systems capable of detecting v...Computing systems have been playing an important role in various medical fields, notably in image diagnosis. Studies in the field of Computational Vision aim at developing techniques and systems capable of detecting various illnesses automatically. What has been highlighted among the existing exams that allow diagnosis aid and the application of computing systems in parallel is Computed Tomography (CT). CT enables the visualization of internal organs, such as the lung and its structures. Computational Vision systems extract information from the CT images by segmenting the regions of interest, and then recognize and identify details in those images. This work focuses on the segmentation phase of CT lung images with singularity-based techniques. Among these methods are the region growing (RG) technique and its 3D RG variations and the thresholding technique with multi-thresholding. The 3D RG method is applied to lung segmentation and from the 3D RG segments of the lung hilum, the multi-thresholding can segment the blood vessels, lung emphysema and the bones. The results of lung segmentation in this work were evaluated by two pulmonologists. The results obtained showed that these methods can integrate aid systems for medical diagnosis in the pulmonology field.展开更多
Purpose: Spleen is enlarged in a variety of clinical conditions including infectious, infiltrative, immunologic and malignant states. Evaluation of splenic size is important in every physical examination of the abdome...Purpose: Spleen is enlarged in a variety of clinical conditions including infectious, infiltrative, immunologic and malignant states. Evaluation of splenic size is important in every physical examination of the abdomen by a physician. Determination of its size by palpation can be extremely inaccurate because spleen is never palpable till it is enlarged 2 to 3 times its own size. The accurate diagnosis of splenic enlargement is a matter of considerable importance as it is a useful guide for arriving at a diagnosis of the disease. It is therefore of utmost importance to resort to a mechanism that will give us an accurate estimation of the size of spleen. Aim of this work was to determine the normal range of spleen dimensions in average adult Saudi Arabian population and compare it with the published data. Methods: CT scans of 34 adult patients (male and female) aged between 20 - 70 years, having no splenic disorders, were collected from department of radio-diagnosis King Khalid Hospital Al-Kharj, KSA. Splenic volume was measured by two methods—by volumetric software and the prolate ellipsoid formula. Results: The average splenic volume of all subjects was 161.42 ± 54.91 cm3 with a range of 106 - 319 cm3. The average splenic volume of males was 196.95 ± 48.70 cm3 and that of female was 196.95 ± 26.97 cm3. Conclusions: These results provide normative data for evaluating patients with splenic enlargement.展开更多
X-ray computed tomography(CT)has been an important technology in paleontology for several decades.It helps researchers to acquire detailed anatomical structures of fossils non-destructively.Despite its widespread appl...X-ray computed tomography(CT)has been an important technology in paleontology for several decades.It helps researchers to acquire detailed anatomical structures of fossils non-destructively.Despite its widespread application,developing an efficient and user-friendly method for segmenting CT data continues to be a formidable challenge in the field.Most CT data segmentation software operates on 2D interfaces,which limits flexibility for real-time adjustments in 3D segmentation.Here,we introduce Curves Mode in Drishti Paint 3.2,an open-source tool for CT data segmentation.Drishti Paint 3.2 allows users to manually or semi-automatically segment the CT data in both 2D and 3D environments,providing a novel solution for revisualizing CT data in paleontological studies.展开更多
The traditional computed tomography(CT)reconstruction methods are noisy,low resolution,poor contrast,and generally not suitable to detect the smaller flaws.Besides,the filter design is also difficult.The CT characteri...The traditional computed tomography(CT)reconstruction methods are noisy,low resolution,poor contrast,and generally not suitable to detect the smaller flaws.Besides,the filter design is also difficult.The CT characteristics reconstruction technology was brought forward to improve in these aspects,which is defined to directly reconstruct the characteristics of the projection for the best requirements not the overall image quality.The two-dimension(2D)and three-dimension(3D)CT characteristics reconstruction algorithm were firstly introduced,then by detailed analysis,experimental results and comparsion of parameters calculated,its advantages in keeping better high-frequency feature,better noise immunity,short time-consuming and easier design are verified.展开更多
In this paper, with the general retrospect to the research on surface reconstruction and the marching cubes algorithm, we gave detailed description of an algorithm on the construction of object surfaces. The possible ...In this paper, with the general retrospect to the research on surface reconstruction and the marching cubes algorithm, we gave detailed description of an algorithm on the construction of object surfaces. The possible ambiguity problem in the original marching cubes algorithm was eliminated by its index mechanism. Some results on the MRI images were presented. Based on extracting and clipping contours from a set of medial slice images and setting the patch vertices values according to the gray images, this algorithm may be applied to form the arbitrary section images with three dimensional effects. It can also enhance the visual effect and interpretation of medical data.展开更多
It is an active research area to reconstruct 3-D object and display its visible surfacesfrom cross-sectional images. In this paper, the methods of reconstructing 3-D object from medicalCT images and displaying the vis...It is an active research area to reconstruct 3-D object and display its visible surfacesfrom cross-sectional images. In this paper, the methods of reconstructing 3-D object from medicalCT images and displaying the visible surfaces are discussed. A polygon approximation methodthat forms polygon with the same number of segment points and a fast interpolation method forcross-sectional contours are presented at first. Then the voxel set of a human liver is reconstructed.And then the liver voxel set is displayed using depth and gradient shading methods. The softwareis written in C programming language at a microcomputer image processing system with a PC/ATcomputer as the host and a PC-VISION board as the image processing unit. The result of theprocessing is satisfying.展开更多
Three-dimensional medical image visualization becomes an essential part for medical field, including computer aided diagnosis, surgery planning and simulation, artificial limb surgery, radiotherapy planning, and teach...Three-dimensional medical image visualization becomes an essential part for medical field, including computer aided diagnosis, surgery planning and simulation, artificial limb surgery, radiotherapy planning, and teaching etc. In this paper, marching cubes algorithm is adopted to reconstruct the 3-D images for the CT image sequence in DICOM format under theVC++6.0 and the visual package VTK platform. The relatively simple interactive operations such as rotation and transfer can be realized on the platform. Moreover, the normal vector and interior point are calculated to form the virtual clipping plane, which is then used to incise the 3-D object. Information of the virtual slice can be obtained, in the mean while the virtual slice images are displayed on the screen. The technique can realize the real time interaction extraction of virtual slice on 3-D CT image. The cuboids structured can be zoomed, moved and eircumrotated by operating mouse to incise the 3-D reconstruction object. Real time interaction can be realized by clipping the reconstruction object. The coordinates can be acquired by the mouse clicking in the 3D space, to realize the point mouse pick-up as well angle and distance interactive measurement. We can get quantitative information about 3-D images through measurement.展开更多
Bioturbation is one of the important processes that affect the structure and function of sedimentary environments.The particle mixing and element migration processes caused by bioturbation can interfere with the circu...Bioturbation is one of the important processes that affect the structure and function of sedimentary environments.The particle mixing and element migration processes caused by bioturbation can interfere with the circulation of matter and the explanation of sedimentary records.Therefore,the quantitative characterization of bioturbation structures in the sedimentary sequence is of great significance in the field of sedimentology.Estuaries,where fresh and saltwater mix,exhibit high ecological heterogeneity and biodiversity,making them ideal places to explore bioturbation.This paper targets the subaqueous Yellow River Delta to quantitatively characterize bioturbation structures and their spatial distribution patterns using computed tomography(CT)scanning and three-dimensional reconstruction technology.By combining sediment characteristics and sedimentary environment analysis,the main factors affecting bioturbation structures are elucidated.The results show that bioturbation structures in the subaqueous Yellow River Delta can be divided into four types based on their morphology:uniaxial type,biaxial type,triaxial type,and multiaxial type.Skolithos,Palaeophycus in the uniaxial type,and Thalassinoides in the multiaxial type are the most developed structures.Different types of bioturbation may be constructed by trace-making organisms belonging to the same category or functional group.The intensity of bioturbation in this area ranges from 0 to 4%,with a decreasing trend from nearshore to offshore.There is a downward decreasing trend in the intensity of bioturbation overall in the sedimentary cores,with three vertical distribution patterns:exponential decay pattern,fluctuating decay pattern,and impulsive pattern.The impulsive pattern of bioturbation in a core may indicate the abrupt change in sedimentary environment induced by the Yellow River channel shift in 1996.These results suggest that factors affecting the development of bioturbation include grain size,porosity,consolidation,organic matter content of sediments,and sedimentation rate that is mainly influenced by local hydrodynamic conditions.The environment with clayey silt(average grain size 10μm)and moderate sedimentation rate(around 0.5 cm yr^(-1))is the most suitable area for the development of bioturbation in the Yellow River subaqueous delta.展开更多
文摘With the development of virtual reality application in the medical field, two-dimensional medical image of the three-dimensional visualization technology made possible. Surgery gets into minimally invasive operation microscopy Era, and gradually becomes a new research hotspot. This paper studies the realization of two-dimensional medical im-age 3D reconstruction visualization system method, and the overall process and management module. Using the main technology of VTK (The Visualization Toolkit) to achieve a two-dimensional medical image three-dimensional visua-lization system, which can help the physician to obtain help clinical diagnosis Information and play an important role in treatment, accurate positioning in diseased tissue and tumor early diagnosis.
文摘Computing systems have been playing an important role in various medical fields, notably in image diagnosis. Studies in the field of Computational Vision aim at developing techniques and systems capable of detecting various illnesses automatically. What has been highlighted among the existing exams that allow diagnosis aid and the application of computing systems in parallel is Computed Tomography (CT). CT enables the visualization of internal organs, such as the lung and its structures. Computational Vision systems extract information from the CT images by segmenting the regions of interest, and then recognize and identify details in those images. This work focuses on the segmentation phase of CT lung images with singularity-based techniques. Among these methods are the region growing (RG) technique and its 3D RG variations and the thresholding technique with multi-thresholding. The 3D RG method is applied to lung segmentation and from the 3D RG segments of the lung hilum, the multi-thresholding can segment the blood vessels, lung emphysema and the bones. The results of lung segmentation in this work were evaluated by two pulmonologists. The results obtained showed that these methods can integrate aid systems for medical diagnosis in the pulmonology field.
文摘Purpose: Spleen is enlarged in a variety of clinical conditions including infectious, infiltrative, immunologic and malignant states. Evaluation of splenic size is important in every physical examination of the abdomen by a physician. Determination of its size by palpation can be extremely inaccurate because spleen is never palpable till it is enlarged 2 to 3 times its own size. The accurate diagnosis of splenic enlargement is a matter of considerable importance as it is a useful guide for arriving at a diagnosis of the disease. It is therefore of utmost importance to resort to a mechanism that will give us an accurate estimation of the size of spleen. Aim of this work was to determine the normal range of spleen dimensions in average adult Saudi Arabian population and compare it with the published data. Methods: CT scans of 34 adult patients (male and female) aged between 20 - 70 years, having no splenic disorders, were collected from department of radio-diagnosis King Khalid Hospital Al-Kharj, KSA. Splenic volume was measured by two methods—by volumetric software and the prolate ellipsoid formula. Results: The average splenic volume of all subjects was 161.42 ± 54.91 cm3 with a range of 106 - 319 cm3. The average splenic volume of males was 196.95 ± 48.70 cm3 and that of female was 196.95 ± 26.97 cm3. Conclusions: These results provide normative data for evaluating patients with splenic enlargement.
文摘X-ray computed tomography(CT)has been an important technology in paleontology for several decades.It helps researchers to acquire detailed anatomical structures of fossils non-destructively.Despite its widespread application,developing an efficient and user-friendly method for segmenting CT data continues to be a formidable challenge in the field.Most CT data segmentation software operates on 2D interfaces,which limits flexibility for real-time adjustments in 3D segmentation.Here,we introduce Curves Mode in Drishti Paint 3.2,an open-source tool for CT data segmentation.Drishti Paint 3.2 allows users to manually or semi-automatically segment the CT data in both 2D and 3D environments,providing a novel solution for revisualizing CT data in paleontological studies.
基金National Natural Science Foundation of China(No.61471325)
文摘The traditional computed tomography(CT)reconstruction methods are noisy,low resolution,poor contrast,and generally not suitable to detect the smaller flaws.Besides,the filter design is also difficult.The CT characteristics reconstruction technology was brought forward to improve in these aspects,which is defined to directly reconstruct the characteristics of the projection for the best requirements not the overall image quality.The two-dimension(2D)and three-dimension(3D)CT characteristics reconstruction algorithm were firstly introduced,then by detailed analysis,experimental results and comparsion of parameters calculated,its advantages in keeping better high-frequency feature,better noise immunity,short time-consuming and easier design are verified.
文摘In this paper, with the general retrospect to the research on surface reconstruction and the marching cubes algorithm, we gave detailed description of an algorithm on the construction of object surfaces. The possible ambiguity problem in the original marching cubes algorithm was eliminated by its index mechanism. Some results on the MRI images were presented. Based on extracting and clipping contours from a set of medial slice images and setting the patch vertices values according to the gray images, this algorithm may be applied to form the arbitrary section images with three dimensional effects. It can also enhance the visual effect and interpretation of medical data.
文摘It is an active research area to reconstruct 3-D object and display its visible surfacesfrom cross-sectional images. In this paper, the methods of reconstructing 3-D object from medicalCT images and displaying the visible surfaces are discussed. A polygon approximation methodthat forms polygon with the same number of segment points and a fast interpolation method forcross-sectional contours are presented at first. Then the voxel set of a human liver is reconstructed.And then the liver voxel set is displayed using depth and gradient shading methods. The softwareis written in C programming language at a microcomputer image processing system with a PC/ATcomputer as the host and a PC-VISION board as the image processing unit. The result of theprocessing is satisfying.
基金National 973 Basic Research Program of Chinagrant number:2010CB732600+4 种基金Major Research Equipment Fund of the Chinese Academy of Sciences and Knowledge Innovation Project of the Chinese Academy of Sciences,2008 Shenzhen Controversial Technology Innovation Research Projectsgrant number:FG200805230224AConcentration plan of innovation sources of Shenzhen-R&D projects of international cooperation on science and technologygrant number:ZYA200903260065ANatural Science Foundation of Guangdong Province,China 8478922035-X0007007
文摘Three-dimensional medical image visualization becomes an essential part for medical field, including computer aided diagnosis, surgery planning and simulation, artificial limb surgery, radiotherapy planning, and teaching etc. In this paper, marching cubes algorithm is adopted to reconstruct the 3-D images for the CT image sequence in DICOM format under theVC++6.0 and the visual package VTK platform. The relatively simple interactive operations such as rotation and transfer can be realized on the platform. Moreover, the normal vector and interior point are calculated to form the virtual clipping plane, which is then used to incise the 3-D object. Information of the virtual slice can be obtained, in the mean while the virtual slice images are displayed on the screen. The technique can realize the real time interaction extraction of virtual slice on 3-D CT image. The cuboids structured can be zoomed, moved and eircumrotated by operating mouse to incise the 3-D reconstruction object. Real time interaction can be realized by clipping the reconstruction object. The coordinates can be acquired by the mouse clicking in the 3D space, to realize the point mouse pick-up as well angle and distance interactive measurement. We can get quantitative information about 3-D images through measurement.
基金supported by the National Natural Science Foundation of China(No.42176077)。
文摘Bioturbation is one of the important processes that affect the structure and function of sedimentary environments.The particle mixing and element migration processes caused by bioturbation can interfere with the circulation of matter and the explanation of sedimentary records.Therefore,the quantitative characterization of bioturbation structures in the sedimentary sequence is of great significance in the field of sedimentology.Estuaries,where fresh and saltwater mix,exhibit high ecological heterogeneity and biodiversity,making them ideal places to explore bioturbation.This paper targets the subaqueous Yellow River Delta to quantitatively characterize bioturbation structures and their spatial distribution patterns using computed tomography(CT)scanning and three-dimensional reconstruction technology.By combining sediment characteristics and sedimentary environment analysis,the main factors affecting bioturbation structures are elucidated.The results show that bioturbation structures in the subaqueous Yellow River Delta can be divided into four types based on their morphology:uniaxial type,biaxial type,triaxial type,and multiaxial type.Skolithos,Palaeophycus in the uniaxial type,and Thalassinoides in the multiaxial type are the most developed structures.Different types of bioturbation may be constructed by trace-making organisms belonging to the same category or functional group.The intensity of bioturbation in this area ranges from 0 to 4%,with a decreasing trend from nearshore to offshore.There is a downward decreasing trend in the intensity of bioturbation overall in the sedimentary cores,with three vertical distribution patterns:exponential decay pattern,fluctuating decay pattern,and impulsive pattern.The impulsive pattern of bioturbation in a core may indicate the abrupt change in sedimentary environment induced by the Yellow River channel shift in 1996.These results suggest that factors affecting the development of bioturbation include grain size,porosity,consolidation,organic matter content of sediments,and sedimentation rate that is mainly influenced by local hydrodynamic conditions.The environment with clayey silt(average grain size 10μm)and moderate sedimentation rate(around 0.5 cm yr^(-1))is the most suitable area for the development of bioturbation in the Yellow River subaqueous delta.