Karst fracture-cavity carbonate reservoirs,in which natural cavities are connected by natural fractures to form cavity clusters in many circumstances,have become significant fields of oil and gas exploration and explo...Karst fracture-cavity carbonate reservoirs,in which natural cavities are connected by natural fractures to form cavity clusters in many circumstances,have become significant fields of oil and gas exploration and exploitation.Proppant fracturing is considered as the best method for exploiting carbonate reservoirs;however,previous studies primarily focused on the effects of individual types of geological formations,such as natural fractures or cavities,on fracture propagation.In this study,true-triaxial physical simulation experiments were systematically performed under four types of stress difference conditions after the accurate prefabrication of four types of different fracture-cavity distributions in artificial samples.Subsequently,the interaction mechanism between the hydraulic fractures and fracture-cavity structures was systematically analyzed in combination with the stress distribution,cross-sectional morphology of the main propagation path,and three-dimensional visualization of the overall fracture network.It was found that the propagation of hydraulic fractures near the cavity was inhibited by the stress concentration surrounding the cavity.In contrast,a natural fracture with a smaller approach angle(0°and 30°)around the cavity can alleviate the stress concentration and significantly facilitate the connection with the cavity.In addition,the hydraulic fracture crossed the natural fracture at the 45°approach angle and bypassed the cavity under higher stress difference conditions.A new stimulation effectiveness evaluation index was established based on the stimulated reservoir area(SRA),tortuosity of the hydraulic fractures(T),and connectivity index(CI)of the cavities.These findings provide new insights into the fracturing design of carbonate reservoirs.展开更多
With the development of anti-virus technology,malicious documents have gradually become the main pathway of Advanced Persistent Threat(APT)attacks,therefore,the development of effective malicious document classifiers ...With the development of anti-virus technology,malicious documents have gradually become the main pathway of Advanced Persistent Threat(APT)attacks,therefore,the development of effective malicious document classifiers has become particularly urgent.Currently,detection methods based on document structure and behavioral features encounter challenges in feature engineering,these methods not only have limited accuracy,but also consume large resources,and usually can only detect documents in specific formats,which lacks versatility and adaptability.To address such problems,this paper proposes a novel malicious document detection method-visualizing documents as GGE images(Grayscale,Grayscale matrix,Entropy).The GGE method visualizes the original byte sequence of the malicious document as a grayscale image,the information entropy sequence of the document as an entropy image,and at the same time,the grayscale level co-occurrence matrix and the texture and spatial information stored in it are converted into grayscale matrix image,and fuses the three types of images to get the GGE color image.The Convolutional Block Attention Module-EfficientNet-B0(CBAM-EfficientNet-B0)model is then used for classification,combining transfer learning and applying the pre-trained model on the ImageNet dataset to the feature extraction process of GGE images.As shown in the experimental results,the GGE method has superior performance compared with other methods,which is suitable for detecting malicious documents in different formats,and achieves an accuracy of 99.44%and 97.39%on Portable Document Format(PDF)and office datasets,respectively,and consumes less time during the detection process,which can be effectively applied to the task of detecting malicious documents in real-time.展开更多
BACKGROUND Epidemiological surveys indicate an increasing incidence of type 2 diabetes mellitus(T2DM)among children and adolescents worldwide.Due to rapid disease progression,severe long-term cardiorenal complications...BACKGROUND Epidemiological surveys indicate an increasing incidence of type 2 diabetes mellitus(T2DM)among children and adolescents worldwide.Due to rapid disease progression,severe long-term cardiorenal complications,a lack of effective treatment strategies,and substantial socioeconomic burdens,it has become an urgent public health issue that requires management and resolution.Adolescent T2DM differs from adult T2DM.Despite a significant increase in our understanding of youth-onset T2DM over the past two decades,the related review and evidence-based content remain limited.AIM To visualize the hotspots and trends in pediatric and adolescent T2DM research and to forecast their future research themes.METHODS This study utilized the terms“children”,“adolescents”,and“type 2 diabetes”,retrieving relevant articles published between 1983 and 2023 from three citation databases within the Web of Science Core Collection(SCI,SSCI,ESCI).Utilizing CiteSpace and VoSviewer software,we analyze and visually represent the annual output of literature,countries involved,and participating institutions.This allows us to predict trends in this research field.Our analysis encompasses co-cited authors,journal overlays,citation overlays,time-zone views,keyword analysis,and reference analysis,etc.RESULTS A total of 9210 articles were included,and the annual publication volume in this field showed a steady growth trend.The United States had the highest number of publications and the highest H-index.The United States also had the most research institutions and the strongest research capacity.The global hot journals were primarily diabetes professional journals but also included journals related to nutrition,endocrinology,and metabolism.Keyword analysis showed that research related to endothelial dysfunction,exposure risk,cardiac metabolic risk,changes in gut microbiota,the impact on comorbidities and outcomes,etc.,were emerging keywords.They have maintained their popularity in this field,suggesting that these areas have garnered significant research interest in recent years.CONCLUSION Pediatric and adolescent T2DM is increasingly drawing global attention,with genes,behaviors,environmental factors,and multisystemic interventions potentially emerging as future research hot spots.展开更多
A chromochemical reactive mass transfer technique has been employed to study local mass transfer characteristics of structured packing. This technology adopted by experiment is an Ammonia Adsorption Method (AAM) tha...A chromochemical reactive mass transfer technique has been employed to study local mass transfer characteristics of structured packing. This technology adopted by experiment is an Ammonia Adsorption Method (AAM) that yields the surface distribution of transferred mass by analyzing the color distribution on a filter paper with the results of the color chemical reaction. A digital image processing technology is applied for data visualiza-tion. The three-dimensional plot of the local mass transfer coefficients shows that there exist three peak values on different positions of a unit cell of structured packing. In order to improve mass transfer efficiency of the structured packing, one piece of baffle is added between packing sheets. As a result, the average mass transfer coefficient increases by (10 20)% and the pressure drop decreases by (15-55)%.展开更多
We propose a convenient way of evaluating the mixing performance of static mixers used for round pipe by conducting flow visualization experiments under the turbulent region and using water as the main stream. A fluor...We propose a convenient way of evaluating the mixing performance of static mixers used for round pipe by conducting flow visualization experiments under the turbulent region and using water as the main stream. A fluorescent pigment, glycerin, two carboxymethyl cellulose solutions, and rapeseed oil were each injected upstream of the mixer. Three static mixer conditions were tested: 1) no static mixer;2) a Kenics-type static mixer;and 3) a multi-stacked elements (MSE) static mixer. The mixing trend downstream of the mixer in each condition and with each injection fluid was monitored using a laser and high-speed video camera system to obtain cross-sectional images. We propose suitable indexes based on the images obtained for quantitative evaluations of the mixing characteristics of static mixers.展开更多
Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a nove...Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a novel approach for the design,analysis,management,control,and integration of CPSS,which can realize the causal analysis of complex systems by means of“algorithmization”of“counterfactuals”.However,because CPSS involve human and social factors(e.g.,autonomy,initiative,and sociality),it is difficult for traditional design of experiment(DOE)methods to achieve the generative explanation of system emergence.To address this challenge,this paper proposes an integrated approach to the design of computational experiments,incorporating three key modules:1)Descriptive module:Determining the influencing factors and response variables of the system by means of the modeling of an artificial society;2)Interpretative module:Selecting factorial experimental design solution to identify the relationship between influencing factors and macro phenomena;3)Predictive module:Building a meta-model that is equivalent to artificial society to explore its operating laws.Finally,a case study of crowd-sourcing platforms is presented to illustrate the application process and effectiveness of the proposed approach,which can reveal the social impact of algorithmic behavior on“rider race”.展开更多
Using ethanol or acetone as the working fluid, visualization of oscillations in steady state was observed visually by high-speed cameras, and temperature oscillating and heat transfer characteristics of closed-loop pl...Using ethanol or acetone as the working fluid, visualization of oscillations in steady state was observed visually by high-speed cameras, and temperature oscillating and heat transfer characteristics of closed-loop plate oscillating heat pipe with parallel channels(POHP-PC) were experimentally investigated by varying liquid filled ratios(50%, 70%, 85%), section scales(1 mm×1 mm and 1 mm×1.5 mm), inclination angles, working fluids and heating inputs. It was found that during operating there was mixed flow consisting of plug flow and annular flow in channels of oscillating heat pipe at steady-state. There was an equilibrium position for working fluid of condenser during oscillating, and periodic oscillations occurred up and down in the vicinity of equilibrium position. With heat input increasing, equilibrium position rose slowly as a result of vapor pressure of evaporation.Evaporation temperature oscillating amplitude possessed a trend of small-large-small and frequency trend was of small-large during steady-state. It may be generally concluded that temperature, whether evaporator or condenser, fluctuated sharply or rose continuously when oscillating heat pipe coming to dry burning state. Simultaneously, it was found that temperature difference of cooling water possibly dropped with heat input rising during dry burning state. Thermal resistance of No. 2 with acetone was lower than that of No. 1 during experiments, but No. 2 achieving heat transfer limit was earlier than No. 1. However, with ethanol, thermal resistance of No. 1 and No. 2 were similar with the heating input less than 110-120 W and filling ratios of 50% and 70%. And with filling ratio of 85%, heating transfer performance of No. 2 was better compared to No. 1 during all the experiments.展开更多
Corrosion leakages often occur in the air cooler of a hydrocracking unit,with the failure sites mainly located in the entrance area of the tubes.An analysis of the macroscopic morphology and corrosion products confirm...Corrosion leakages often occur in the air cooler of a hydrocracking unit,with the failure sites mainly located in the entrance area of the tubes.An analysis of the macroscopic morphology and corrosion products confirmed that the damage was caused by erosion-corrosion(E-C).Numerical and experimental methods were applied to investigate the E-C mechanism in the air cooler.Computational fluid dynamics(CFD)was used to calculate the hydrodynamic parameters of the air cooler.The results showed that there was a biased flow in the air cooler,which led to a significant increase in velocity,turbulent kinetic energy and wall shear within 0.2 m of the tube entrance.A visualization experiment was then performed to determine the principles of migration and transformation of multiphase flow in the air cooler tubes.Various flow patterns(pure droplet flow,mist flow,and annular flow)and their evolutionary processes were clearly depicted experimentally.The initiation mechanism and processes leading to the development of E-C in the air cooler were also determined.This study provided a comprehensive explanation for the E-C failures that occur in air coolers during operation.展开更多
Molten salt pebble bed reactor is one of the sixth-generation Ⅳ reactor types. To investigate the mechanical behavior of the fuel pebbles in the core, a visualization experiment facility of pebble bed(VEFPB) is desig...Molten salt pebble bed reactor is one of the sixth-generation Ⅳ reactor types. To investigate the mechanical behavior of the fuel pebbles in the core, a visualization experiment facility of pebble bed(VEFPB) is designed. To obtain a uniform flow field of the core and analyze the influence of the flow field on the structure of the pebble bed, computational fluid dynamics software Fluent is used to simulate the flow field distribution of the core of VEFPB. The simulation results show that the disturbance at the bottom of the pebble bed is proportional to the flow velocity of the inlet pipe, and the flow velocity close to the inlet side is more significant than that in other parts; the design of the cylinder bottom plate with holes of different sizes can effectively reduce the flow velocity and the disturbance at the bottom of the pebble bed. In addition,according to the velocity contours of the core of VEFPB, it is observed that the flow field distribution of the core is considerably uniform except at the bottom of the pebble bed. This ensures the stability of the pebble bed and verifies the rationality of the design of VEFPB. This study provides the technical support and reference for the flow field analysis of the core of molten salt pebble bed reactor.展开更多
BACKGROUND Cancer is one of the most serious threats to human health worldwide.Conventional treatments such as surgery and chemotherapy are associated with some drawbacks.In recent years,traditional Chinese medicine t...BACKGROUND Cancer is one of the most serious threats to human health worldwide.Conventional treatments such as surgery and chemotherapy are associated with some drawbacks.In recent years,traditional Chinese medicine treatment has been increasingly advocated by patients and attracted attention from clinicians,and has become an indispensable part of the comprehensive treatment for gastric cancer.AIM To investigate the mechanism of Xiaojianzhong decoction(XJZ)in the treatment of gastric cancer(GC)by utilizing network pharmacology and experimental validation,so as to provide a theoretical basis for later experimental research.METHODS We analyzed the mechanism and targets of XJZ in the treatment of GC through network pharmacology and bioinformatics.Subsequently,we verified the impact of XJZ treatment on the proliferative ability of GC cells through CCK-8,apoptosis,cell cycle,and clone formation assays.Additionally,we performed Western blot analysis and real-time quantitative PCR to assess the protein and mRNA expression of the core proteins.RESULTS XJZ mainly regulates IL6,PTGS2,CCL2,MMP9,MMP2,HMOX1,and other target genes and pathways in cancer to treat GC.The inhibition of cell viability,the increase of apoptosis,the blockage of the cell cycle at the G0/G1 phase,and the inhibition of the ability of cell clone formation were observed in AGS and HGC-27 cells after XJZ treatment.In addition,XJZ induced a decrease in the mRNA expression of IL6,PTGS2,MMP9,MMP2,and CCL2,and an increase in the mRNA expression of HOMX1.XJZ significantly inhibited the expression of IL6,PTGS2,MMP9,MMP2,and CCL2 proteins and promoted the expression of the heme oxygenase-1 protein.CONCLUSION XJZ exerts therapeutic effects against GC through multiple components,multiple targets,and multiple pathways.Our findings provide a new idea and scientific basis for further research on the molecular mechanisms underlying the therapeutic effects of XJZ in the treatment of GC.展开更多
High-strength steels are mainly composed of medium-or low-temperature microstructures,such as bainite or martensite,with coherent transformation characteristics.This type of microstructure has a high density of disloc...High-strength steels are mainly composed of medium-or low-temperature microstructures,such as bainite or martensite,with coherent transformation characteristics.This type of microstructure has a high density of dislocations and fine crystallographic structural units,which ease the coordinated matching of high strength,toughness,and plasticity.Meanwhile,given its excellent welding perform-ance,high-strength steel has been widely used in major engineering constructions,such as pipelines,ships,and bridges.However,visual-ization and digitization of the effective units of these coherent transformation structures using traditional methods(optical microscopy and scanning electron microscopy)is difficult due to their complex morphology.Moreover,the establishment of quantitative relationships with macroscopic mechanical properties and key process parameters presents additional difficulty.This article reviews the latest progress in microstructural visualization and digitization of high-strength steel,with a focus on the application of crystallographic methods in the development of high-strength steel plates and welding.We obtained the crystallographic data(Euler angle)of the transformed microstruc-tures through electron back-scattering diffraction and combined them with the calculation of inverse transformation from bainite or martensite to austenite to determine the reconstruction of high-temperature parent austenite and orientation relationship(OR)during con-tinuous cooling transformation.Furthermore,visualization of crystallographic packets,blocks,and variants based on actual OR and digit-ization of various grain boundaries can be effectively completed to establish quantitative relationships with alloy composition and key process parameters,thereby providing reverse design guidance for the development of high-strength steel.展开更多
Liaohe oilfield gravity drainage assisted steam flooding of heavy oil reservoir has made significant development effect, but the drain rule of condensate is unclear in the process of development. Heavy oil drainage mi...Liaohe oilfield gravity drainage assisted steam flooding of heavy oil reservoir has made significant development effect, but the drain rule of condensate is unclear in the process of development. Heavy oil drainage microscopic visualization experimental study of using core model of glass etching, drainage process simulation of heavy oil reservoir and its influence factors were analyzed. Its method turns the drainage process of images into computer numerical signal through the image acquisition system, intuitive display flow pattern of drainage, and analyses the influence of homogeneity and the pressure differential regulation of drainage through the experimental data. The experiment results show that condensate around the steam chamber has a corresponding drainage channel, not uniform or diarrhea in the gravity drainage assisted steam flooding process. At the beginning of the drainage channels formation, the instantaneous drainage amount along with the change of pressure difference is not obvious. Instantaneous drainage amount increases with increasing pressure difference in the medium term. It tends to be stable in the later. The time of drainage channels to form homogeneous core is earlier than heterogeneous core. After the drainage channel, differential effects on heterogeneous core than homogeneous core of instantaneous drainage water.展开更多
Extended experiments were conducted on the oscillation characteristics of merged liquid slugs in a horizontally oriented polymer pulsating heat pipe(PHP).The PHP’s serpentine channel comprised 14 parallel channels wi...Extended experiments were conducted on the oscillation characteristics of merged liquid slugs in a horizontally oriented polymer pulsating heat pipe(PHP).The PHP’s serpentine channel comprised 14 parallel channels with a width of 1.3 mm and a height of 1.1 mm.The evaporator and condenser sections were 25 and 50 mm long,respectively,and the adiabatic section in between was 75mmlong.Using a plastic 3D printer and semi-transparent filament made from acrylonitrile butadiene styrene,the serpentine channel was printed directly onto a thin polycarbonate sheet to form the PHP.The PHP was charged with hydrofluoroether-7100.In the experiments,the evaporator section was heated,and the condenser section was cooled using high-temperature and low-temperature thermostatic baths,respectively.Flow patterns of the working fluid were obtained with temperature distributions of the PHP.A mathematical model was developed to analyze the flow patterns.Themerged liquid slugs were observed in every two channels,and their oscillation characteristics were found to be approximately the same in time and space.It was also found that the oscillations of the merged liquid slugs became slower,but the heat transfer rate of the PHP increased with a decrease in the filling ratio of the working fluid.This is because vapor condensation was enhanced in vapor plugs as the filling ratio decreased.However,the filling ratio had a lower limit,and the heat transfer rate was maximum when the filling ratio was 40.6%in the present experimental range.展开更多
BACKGROUND Biliary stone disease is a highly prevalent condition and a leading cause of hospitalization worldwide.Hepatolithiasis with associated strictures has high residual and recurrence rates after traditional mul...BACKGROUND Biliary stone disease is a highly prevalent condition and a leading cause of hospitalization worldwide.Hepatolithiasis with associated strictures has high residual and recurrence rates after traditional multisession percutaneous transhepatic cholangioscopic lithotripsy(PTCSL).AIM To study one-step PTCSL using the percutaneous transhepatic one-step biliary fistulation(PTOBF)technique guided by three-dimensional(3D)visualization.METHODS This was a retrospective,single-center study analyzing,140 patients who,between October 2016 and October 2023,underwent one-step PTCSL for hepatolithiasis.The patients were divided into two groups:The 3D-PTOBF group and the PTOBF group.Stone clearance on choledochoscopy,complications,and long-term clearance and recurrence rates were assessed.RESULTS Age,total bilirubin,direct bilirubin,Child-Pugh class,and stone location were similar between the 2 groups,but there was a significant difference in bile duct strictures,with biliary strictures more common in the 3D-PTOBF group(P=0.001).The median follow-up time was 55.0(55.0,512.0)days.The immediate stone clearance ratio(88.6%vs 27.1%,P=0.000)and stricture resolution ratio(97.1%vs 78.6%,P=0.001)in the 3D-PTOBF group were significantly greater than those in the PTOBF group.Postoperative complication(8.6%vs 41.4%,P=0.000)and stone recurrence rates(7.1%vs 38.6%,P=0.000)were significantly lower in the 3D-PTOBF group.CONCLUSION Three-dimensional visualization helps make one-step PTCSL a safe,effective,and promising treatment for patients with complicated primary hepatolithiasis.The perioperative and long-term outcomes are satisfactory for patients with complicated primary hepatolithiasis.This minimally invasive method has the potential to be used as a substitute for hepatobiliary surgery.展开更多
The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribut...The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration.In this paper,a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments(micro-RME),accurate grain-based modeling(AGBM)and upscaling methods based on reliability principles.Firstly,the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer(TIMA)and nanoindentation.The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov(K-S)test.Secondly,based on best distribution function of each mineral,the Monte Carlo simulations(MCS)and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus.Thirdly,the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established.The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship.The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples.展开更多
BACKGROUND When exposed to high-altitude environments,the cardiovascular system undergoes various changes,the performance and mechanisms of which remain controversial.AIM To summarize the latest research advancements ...BACKGROUND When exposed to high-altitude environments,the cardiovascular system undergoes various changes,the performance and mechanisms of which remain controversial.AIM To summarize the latest research advancements and hot research points in the cardiovascular system at high altitude by conducting a bibliometric and visualization analysis.METHODS The literature was systematically retrieved and filtered using the Web of Science Core Collection of Science Citation Index Expanded.A visualization analysis of the identified publications was conducted employing CiteSpace and VOSviewer.RESULTS A total of 1674 publications were included in the study,with an observed annual increase in the number of publications spanning from 1990 to 2022.The United States of America emerged as the predominant contributor,while Universidad Peruana Cayetano Heredia stood out as the institution with the highest publication output.Notably,Jean-Paul Richalet demonstrated the highest productivity among researchers focusing on the cardiovascular system at high altitude.Furthermore,Peter Bärtsch emerged as the author with the highest number of cited articles.Keyword analysis identified hypoxia,exercise,acclimatization,acute and chronic mountain sickness,pulmonary hypertension,metabolism,and echocardiography as the primary research hot research points and emerging directions in the study of the cardiovascular system at high altitude.CONCLUSION Over the past 32 years,research on the cardiovascular system in high-altitude regions has been steadily increasing.Future research in this field may focus on areas such as hypoxia adaptation,metabolism,and cardiopulmonary exercise.Strengthening interdisciplinary and multi-team collaborations will facilitate further exploration of the pathophysiological mechanisms underlying cardiovascular changes in high-altitude environments and provide a theoretical basis for standardized disease diagnosis and treatment.展开更多
A new visualization method for studying the damage to gel structure caused by high salinity ions is explored by using the characteristics of suppression image signal of Mn^(2+) and nuclear magnetic resonance(NMR) imag...A new visualization method for studying the damage to gel structure caused by high salinity ions is explored by using the characteristics of suppression image signal of Mn^(2+) and nuclear magnetic resonance(NMR) imaging technique. The diffusion and distribution characteristics of Mn^(2+) in porous media-gel system were studied based on manganese chloride static diffusion and gel flooding experiments, and the gel's nuclear magnetic image and displacement pressure were tested. The results show that the diffusion of Mn^(2+)conforms to the Fick diffusion law in porous media-gel system, and the diffusion speed of Mn^(2+) increases and the area of gel image decreases gradually with the increase of concentration, and the image of gel decreases faster and the pressure drop of water drive is larger in flooding experiment of manganese chloride with higher concentration. Reaction-diffusion model with the reaction of Mn^(2+) with gel was established to study the concentration distribution characteristics of Mn^(2+). The model is validated by comparing the results with magnetic resonance imaging(MRI) experiments and the diffusion coefficient of Mn^(2+) equals 1.6 mm^2/h, and the minimum concentration of Mn^(2+) to impact gel NMR image signals is 2.5 g/L. The above results show that the diffusion of Mn^(2+) into the gel in the rock core inhibits the imaging signal of the gel and damages its strength, and the greater the concentration is, the greater the influence. Increase of adsorption amount of gel and reaction rate, reduction of diffusion time, and addition of ion adsorption isolator all can reduce the impact of Mn^(2+) on the gel.展开更多
Porous carbonate reservoirs,prevalent in the Middle East,are lithologically dominated by bioclastic limestones,exhibiting high porosity,low permeability,intricate pore structure,and strong heterogeneity.Waterflooding ...Porous carbonate reservoirs,prevalent in the Middle East,are lithologically dominated by bioclastic limestones,exhibiting high porosity,low permeability,intricate pore structure,and strong heterogeneity.Waterflooding through horizontal wells is commonly used for exploiting these reservoirs.However,challenges persist,such as significant uncertainty and complex operational procedures regarding adjustment effects during the exploitation.The USH reservoir of the Cretaceous D oilfield,Oman exemplifies typical porous carbonate reservoirs.It initially underwent depletion drive using vertical wells,followed by horizontal well waterflooding in the late stage.Currently,the oilfield is confronted with substantial developmental challenges,involving the understanding of residual oil distribution,effective water cut control,and sustaining oil production since it has entered the late development stage.Employing a microscopic visualization displacement system equipped with electrodes,this study elucidated the waterflooding mechanisms and residual oil distribution in the late-stage development of the USH reservoir.The results reveal that the reservoir's vertical stacking patterns act as the main factor affecting the horizontal well waterflooding efficacy.Distinct water flow channels emerge under varying reservoir stacking patterns,with post-waterflooding residual oil predominantly distributed at the reservoir's top and bottom.The oil recovery can be enhanced by adjusting the waterflooding's flow line and intensity.The findings of this study will provide theoretical insights of waterflooding mechanisms and injection-production adjustments for exploiting other porous carbonate reservoirs in the Middle East through horizontal wells.展开更多
Magnesium alloy is one of the lightest metal structural materials.The weight is further reduced through the hollow structure.However,the hollow structure is easily damaged during processing.In order to maintain the ho...Magnesium alloy is one of the lightest metal structural materials.The weight is further reduced through the hollow structure.However,the hollow structure is easily damaged during processing.In order to maintain the hollow structure and to transfer the stresses during the high temperature deformation,the sand mandrel is proposed.In this paper,the hollow AZ31 magnesium alloy three-channel joint is studied by hot extrusion forming.Sand as one of solid granule medium is used to fill the hollow magnesium alloy.The extrusion temperatures are 230℃ and 300℃,respectively.The process parameters(die angle,temperature,bottom thickness,sidewall thickness,edge-to-middle ratio in bottom,bottom shape)of the hollow magnesium alloy are analyzed based on the results of experiments and the finite element method.The results are shown that the formability of the hollow magnesium alloy will be much better when the ratio of sidewall thickness to the bottom thickness is 1:1.5.Also when edge-to-middle ratio in bottom is about 1:1.5,a better forming product can be received.The best bottom shape in these experiments will be convex based on the forming results.The grain will be refined obviously after the extrusion.Also the microstructures will be shown as streamlines.And these lines will be well agreement with the mold in the corner.展开更多
In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relat...In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relationship and functions of the integrated database,the intelligent thermal control system and the efficient liquid cooling system in the ATMS are elaborated upon.For the complex thermal field regulation system and extreme space thermal environment,a modular simulation and thermal field planning method are proposed,and the feasibility of the planning algorithm is verified by numerical simulation.A solar array liquid cooling system is developed,and the system simulation results indicate that the temperatures of the solar arrays meet the requirements as the spacecraft flies by perihelion and aphelion.The advanced thermal management study supports the development of the SCOPE program and provides a reference for the thermal management in other deep-space exploration programs.展开更多
基金sponsored by the National Natural Science Foundation of China(Grants Nos.52104046 and 52104010).
文摘Karst fracture-cavity carbonate reservoirs,in which natural cavities are connected by natural fractures to form cavity clusters in many circumstances,have become significant fields of oil and gas exploration and exploitation.Proppant fracturing is considered as the best method for exploiting carbonate reservoirs;however,previous studies primarily focused on the effects of individual types of geological formations,such as natural fractures or cavities,on fracture propagation.In this study,true-triaxial physical simulation experiments were systematically performed under four types of stress difference conditions after the accurate prefabrication of four types of different fracture-cavity distributions in artificial samples.Subsequently,the interaction mechanism between the hydraulic fractures and fracture-cavity structures was systematically analyzed in combination with the stress distribution,cross-sectional morphology of the main propagation path,and three-dimensional visualization of the overall fracture network.It was found that the propagation of hydraulic fractures near the cavity was inhibited by the stress concentration surrounding the cavity.In contrast,a natural fracture with a smaller approach angle(0°and 30°)around the cavity can alleviate the stress concentration and significantly facilitate the connection with the cavity.In addition,the hydraulic fracture crossed the natural fracture at the 45°approach angle and bypassed the cavity under higher stress difference conditions.A new stimulation effectiveness evaluation index was established based on the stimulated reservoir area(SRA),tortuosity of the hydraulic fractures(T),and connectivity index(CI)of the cavities.These findings provide new insights into the fracturing design of carbonate reservoirs.
基金supported by the Natural Science Foundation of Henan Province(Grant No.242300420297)awarded to Yi Sun.
文摘With the development of anti-virus technology,malicious documents have gradually become the main pathway of Advanced Persistent Threat(APT)attacks,therefore,the development of effective malicious document classifiers has become particularly urgent.Currently,detection methods based on document structure and behavioral features encounter challenges in feature engineering,these methods not only have limited accuracy,but also consume large resources,and usually can only detect documents in specific formats,which lacks versatility and adaptability.To address such problems,this paper proposes a novel malicious document detection method-visualizing documents as GGE images(Grayscale,Grayscale matrix,Entropy).The GGE method visualizes the original byte sequence of the malicious document as a grayscale image,the information entropy sequence of the document as an entropy image,and at the same time,the grayscale level co-occurrence matrix and the texture and spatial information stored in it are converted into grayscale matrix image,and fuses the three types of images to get the GGE color image.The Convolutional Block Attention Module-EfficientNet-B0(CBAM-EfficientNet-B0)model is then used for classification,combining transfer learning and applying the pre-trained model on the ImageNet dataset to the feature extraction process of GGE images.As shown in the experimental results,the GGE method has superior performance compared with other methods,which is suitable for detecting malicious documents in different formats,and achieves an accuracy of 99.44%and 97.39%on Portable Document Format(PDF)and office datasets,respectively,and consumes less time during the detection process,which can be effectively applied to the task of detecting malicious documents in real-time.
基金Supported by the National Natural Science Foundation of China,No.82105018 and No.81903950.
文摘BACKGROUND Epidemiological surveys indicate an increasing incidence of type 2 diabetes mellitus(T2DM)among children and adolescents worldwide.Due to rapid disease progression,severe long-term cardiorenal complications,a lack of effective treatment strategies,and substantial socioeconomic burdens,it has become an urgent public health issue that requires management and resolution.Adolescent T2DM differs from adult T2DM.Despite a significant increase in our understanding of youth-onset T2DM over the past two decades,the related review and evidence-based content remain limited.AIM To visualize the hotspots and trends in pediatric and adolescent T2DM research and to forecast their future research themes.METHODS This study utilized the terms“children”,“adolescents”,and“type 2 diabetes”,retrieving relevant articles published between 1983 and 2023 from three citation databases within the Web of Science Core Collection(SCI,SSCI,ESCI).Utilizing CiteSpace and VoSviewer software,we analyze and visually represent the annual output of literature,countries involved,and participating institutions.This allows us to predict trends in this research field.Our analysis encompasses co-cited authors,journal overlays,citation overlays,time-zone views,keyword analysis,and reference analysis,etc.RESULTS A total of 9210 articles were included,and the annual publication volume in this field showed a steady growth trend.The United States had the highest number of publications and the highest H-index.The United States also had the most research institutions and the strongest research capacity.The global hot journals were primarily diabetes professional journals but also included journals related to nutrition,endocrinology,and metabolism.Keyword analysis showed that research related to endothelial dysfunction,exposure risk,cardiac metabolic risk,changes in gut microbiota,the impact on comorbidities and outcomes,etc.,were emerging keywords.They have maintained their popularity in this field,suggesting that these areas have garnered significant research interest in recent years.CONCLUSION Pediatric and adolescent T2DM is increasingly drawing global attention,with genes,behaviors,environmental factors,and multisystemic interventions potentially emerging as future research hot spots.
文摘A chromochemical reactive mass transfer technique has been employed to study local mass transfer characteristics of structured packing. This technology adopted by experiment is an Ammonia Adsorption Method (AAM) that yields the surface distribution of transferred mass by analyzing the color distribution on a filter paper with the results of the color chemical reaction. A digital image processing technology is applied for data visualiza-tion. The three-dimensional plot of the local mass transfer coefficients shows that there exist three peak values on different positions of a unit cell of structured packing. In order to improve mass transfer efficiency of the structured packing, one piece of baffle is added between packing sheets. As a result, the average mass transfer coefficient increases by (10 20)% and the pressure drop decreases by (15-55)%.
文摘We propose a convenient way of evaluating the mixing performance of static mixers used for round pipe by conducting flow visualization experiments under the turbulent region and using water as the main stream. A fluorescent pigment, glycerin, two carboxymethyl cellulose solutions, and rapeseed oil were each injected upstream of the mixer. Three static mixer conditions were tested: 1) no static mixer;2) a Kenics-type static mixer;and 3) a multi-stacked elements (MSE) static mixer. The mixing trend downstream of the mixer in each condition and with each injection fluid was monitored using a laser and high-speed video camera system to obtain cross-sectional images. We propose suitable indexes based on the images obtained for quantitative evaluations of the mixing characteristics of static mixers.
基金the National Key Research and Development Program of China(2021YFF0900800)the National Natural Science Foundation of China(61972276,62206116,62032016)+2 种基金the New Liberal Arts Reform and Practice Project of National Ministry of Education(2021170002)the Open Research Fund of the State Key Laboratory for Management and Control of Complex Systems(20210101)Tianjin University Talent Innovation Reward Program for Literature and Science Graduate Student(C1-2022-010)。
文摘Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a novel approach for the design,analysis,management,control,and integration of CPSS,which can realize the causal analysis of complex systems by means of“algorithmization”of“counterfactuals”.However,because CPSS involve human and social factors(e.g.,autonomy,initiative,and sociality),it is difficult for traditional design of experiment(DOE)methods to achieve the generative explanation of system emergence.To address this challenge,this paper proposes an integrated approach to the design of computational experiments,incorporating three key modules:1)Descriptive module:Determining the influencing factors and response variables of the system by means of the modeling of an artificial society;2)Interpretative module:Selecting factorial experimental design solution to identify the relationship between influencing factors and macro phenomena;3)Predictive module:Building a meta-model that is equivalent to artificial society to explore its operating laws.Finally,a case study of crowd-sourcing platforms is presented to illustrate the application process and effectiveness of the proposed approach,which can reveal the social impact of algorithmic behavior on“rider race”.
基金Project(51306198)supported by the National Natural Science Foundation of ChinaProject(NR2013K07)supported by Beijing Key Lab of Heating,Gas Supply,Ventilating and Air Conditioning Engineering,China+1 种基金Project(331614013)supported by Beijing University of Civil Engineering and Architecture,ChinaProject(00921915023)supported by Organization Department of Beijing,China
文摘Using ethanol or acetone as the working fluid, visualization of oscillations in steady state was observed visually by high-speed cameras, and temperature oscillating and heat transfer characteristics of closed-loop plate oscillating heat pipe with parallel channels(POHP-PC) were experimentally investigated by varying liquid filled ratios(50%, 70%, 85%), section scales(1 mm×1 mm and 1 mm×1.5 mm), inclination angles, working fluids and heating inputs. It was found that during operating there was mixed flow consisting of plug flow and annular flow in channels of oscillating heat pipe at steady-state. There was an equilibrium position for working fluid of condenser during oscillating, and periodic oscillations occurred up and down in the vicinity of equilibrium position. With heat input increasing, equilibrium position rose slowly as a result of vapor pressure of evaporation.Evaporation temperature oscillating amplitude possessed a trend of small-large-small and frequency trend was of small-large during steady-state. It may be generally concluded that temperature, whether evaporator or condenser, fluctuated sharply or rose continuously when oscillating heat pipe coming to dry burning state. Simultaneously, it was found that temperature difference of cooling water possibly dropped with heat input rising during dry burning state. Thermal resistance of No. 2 with acetone was lower than that of No. 1 during experiments, but No. 2 achieving heat transfer limit was earlier than No. 1. However, with ethanol, thermal resistance of No. 1 and No. 2 were similar with the heating input less than 110-120 W and filling ratios of 50% and 70%. And with filling ratio of 85%, heating transfer performance of No. 2 was better compared to No. 1 during all the experiments.
基金supported by the National Key R&D Program of China(2021YFB3301100)Beijing University of Chemical Technology Interdisciplinary Program(XK2023-07).
文摘Corrosion leakages often occur in the air cooler of a hydrocracking unit,with the failure sites mainly located in the entrance area of the tubes.An analysis of the macroscopic morphology and corrosion products confirmed that the damage was caused by erosion-corrosion(E-C).Numerical and experimental methods were applied to investigate the E-C mechanism in the air cooler.Computational fluid dynamics(CFD)was used to calculate the hydrodynamic parameters of the air cooler.The results showed that there was a biased flow in the air cooler,which led to a significant increase in velocity,turbulent kinetic energy and wall shear within 0.2 m of the tube entrance.A visualization experiment was then performed to determine the principles of migration and transformation of multiphase flow in the air cooler tubes.Various flow patterns(pure droplet flow,mist flow,and annular flow)and their evolutionary processes were clearly depicted experimentally.The initiation mechanism and processes leading to the development of E-C in the air cooler were also determined.This study provided a comprehensive explanation for the E-C failures that occur in air coolers during operation.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XD02010000)the Frontier Science Key Program of the Chinese Academy of Sciences(No.QYZDY-SSW-JSC016)
文摘Molten salt pebble bed reactor is one of the sixth-generation Ⅳ reactor types. To investigate the mechanical behavior of the fuel pebbles in the core, a visualization experiment facility of pebble bed(VEFPB) is designed. To obtain a uniform flow field of the core and analyze the influence of the flow field on the structure of the pebble bed, computational fluid dynamics software Fluent is used to simulate the flow field distribution of the core of VEFPB. The simulation results show that the disturbance at the bottom of the pebble bed is proportional to the flow velocity of the inlet pipe, and the flow velocity close to the inlet side is more significant than that in other parts; the design of the cylinder bottom plate with holes of different sizes can effectively reduce the flow velocity and the disturbance at the bottom of the pebble bed. In addition,according to the velocity contours of the core of VEFPB, it is observed that the flow field distribution of the core is considerably uniform except at the bottom of the pebble bed. This ensures the stability of the pebble bed and verifies the rationality of the design of VEFPB. This study provides the technical support and reference for the flow field analysis of the core of molten salt pebble bed reactor.
基金West Light Foundation of the Ningxia Key Research and Development Program,No.2023BEG02015High-level Key Discipline Construction Project of State Administration of Traditional Chinese Medicine,No.2022-226+1 种基金Talent Development Projects of Young Qihuang of National Administration of Traditional Chinese Medicine,No.2020-218National Natural Science Foundation of China,No.82374261.
文摘BACKGROUND Cancer is one of the most serious threats to human health worldwide.Conventional treatments such as surgery and chemotherapy are associated with some drawbacks.In recent years,traditional Chinese medicine treatment has been increasingly advocated by patients and attracted attention from clinicians,and has become an indispensable part of the comprehensive treatment for gastric cancer.AIM To investigate the mechanism of Xiaojianzhong decoction(XJZ)in the treatment of gastric cancer(GC)by utilizing network pharmacology and experimental validation,so as to provide a theoretical basis for later experimental research.METHODS We analyzed the mechanism and targets of XJZ in the treatment of GC through network pharmacology and bioinformatics.Subsequently,we verified the impact of XJZ treatment on the proliferative ability of GC cells through CCK-8,apoptosis,cell cycle,and clone formation assays.Additionally,we performed Western blot analysis and real-time quantitative PCR to assess the protein and mRNA expression of the core proteins.RESULTS XJZ mainly regulates IL6,PTGS2,CCL2,MMP9,MMP2,HMOX1,and other target genes and pathways in cancer to treat GC.The inhibition of cell viability,the increase of apoptosis,the blockage of the cell cycle at the G0/G1 phase,and the inhibition of the ability of cell clone formation were observed in AGS and HGC-27 cells after XJZ treatment.In addition,XJZ induced a decrease in the mRNA expression of IL6,PTGS2,MMP9,MMP2,and CCL2,and an increase in the mRNA expression of HOMX1.XJZ significantly inhibited the expression of IL6,PTGS2,MMP9,MMP2,and CCL2 proteins and promoted the expression of the heme oxygenase-1 protein.CONCLUSION XJZ exerts therapeutic effects against GC through multiple components,multiple targets,and multiple pathways.Our findings provide a new idea and scientific basis for further research on the molecular mechanisms underlying the therapeutic effects of XJZ in the treatment of GC.
基金supported by the National Key Research and Development Project of China(Nos.2022YFB3708200 and 2021YFB3703500)the National Natural Science Foundation of China(Nos.52271089 and 52001023).
文摘High-strength steels are mainly composed of medium-or low-temperature microstructures,such as bainite or martensite,with coherent transformation characteristics.This type of microstructure has a high density of dislocations and fine crystallographic structural units,which ease the coordinated matching of high strength,toughness,and plasticity.Meanwhile,given its excellent welding perform-ance,high-strength steel has been widely used in major engineering constructions,such as pipelines,ships,and bridges.However,visual-ization and digitization of the effective units of these coherent transformation structures using traditional methods(optical microscopy and scanning electron microscopy)is difficult due to their complex morphology.Moreover,the establishment of quantitative relationships with macroscopic mechanical properties and key process parameters presents additional difficulty.This article reviews the latest progress in microstructural visualization and digitization of high-strength steel,with a focus on the application of crystallographic methods in the development of high-strength steel plates and welding.We obtained the crystallographic data(Euler angle)of the transformed microstruc-tures through electron back-scattering diffraction and combined them with the calculation of inverse transformation from bainite or martensite to austenite to determine the reconstruction of high-temperature parent austenite and orientation relationship(OR)during con-tinuous cooling transformation.Furthermore,visualization of crystallographic packets,blocks,and variants based on actual OR and digit-ization of various grain boundaries can be effectively completed to establish quantitative relationships with alloy composition and key process parameters,thereby providing reverse design guidance for the development of high-strength steel.
文摘Liaohe oilfield gravity drainage assisted steam flooding of heavy oil reservoir has made significant development effect, but the drain rule of condensate is unclear in the process of development. Heavy oil drainage microscopic visualization experimental study of using core model of glass etching, drainage process simulation of heavy oil reservoir and its influence factors were analyzed. Its method turns the drainage process of images into computer numerical signal through the image acquisition system, intuitive display flow pattern of drainage, and analyses the influence of homogeneity and the pressure differential regulation of drainage through the experimental data. The experiment results show that condensate around the steam chamber has a corresponding drainage channel, not uniform or diarrhea in the gravity drainage assisted steam flooding process. At the beginning of the drainage channels formation, the instantaneous drainage amount along with the change of pressure difference is not obvious. Instantaneous drainage amount increases with increasing pressure difference in the medium term. It tends to be stable in the later. The time of drainage channels to form homogeneous core is earlier than heterogeneous core. After the drainage channel, differential effects on heterogeneous core than homogeneous core of instantaneous drainage water.
基金supported by JSPS KAKENHI Grant Number 22K03947.
文摘Extended experiments were conducted on the oscillation characteristics of merged liquid slugs in a horizontally oriented polymer pulsating heat pipe(PHP).The PHP’s serpentine channel comprised 14 parallel channels with a width of 1.3 mm and a height of 1.1 mm.The evaporator and condenser sections were 25 and 50 mm long,respectively,and the adiabatic section in between was 75mmlong.Using a plastic 3D printer and semi-transparent filament made from acrylonitrile butadiene styrene,the serpentine channel was printed directly onto a thin polycarbonate sheet to form the PHP.The PHP was charged with hydrofluoroether-7100.In the experiments,the evaporator section was heated,and the condenser section was cooled using high-temperature and low-temperature thermostatic baths,respectively.Flow patterns of the working fluid were obtained with temperature distributions of the PHP.A mathematical model was developed to analyze the flow patterns.Themerged liquid slugs were observed in every two channels,and their oscillation characteristics were found to be approximately the same in time and space.It was also found that the oscillations of the merged liquid slugs became slower,but the heat transfer rate of the PHP increased with a decrease in the filling ratio of the working fluid.This is because vapor condensation was enhanced in vapor plugs as the filling ratio decreased.However,the filling ratio had a lower limit,and the heat transfer rate was maximum when the filling ratio was 40.6%in the present experimental range.
基金Supported by The Key Medical Specialty Nurturing Program of Foshan During The 14th Five-Year Plan Period,No.FSPY145205The Medical Research Project of Foshan Health Bureau,No.20230814A010024+1 种基金The Guangzhou Science and Technology Plan Project,No.202102010251the Guangdong Science and Technology Program,No.2017ZC0222.
文摘BACKGROUND Biliary stone disease is a highly prevalent condition and a leading cause of hospitalization worldwide.Hepatolithiasis with associated strictures has high residual and recurrence rates after traditional multisession percutaneous transhepatic cholangioscopic lithotripsy(PTCSL).AIM To study one-step PTCSL using the percutaneous transhepatic one-step biliary fistulation(PTOBF)technique guided by three-dimensional(3D)visualization.METHODS This was a retrospective,single-center study analyzing,140 patients who,between October 2016 and October 2023,underwent one-step PTCSL for hepatolithiasis.The patients were divided into two groups:The 3D-PTOBF group and the PTOBF group.Stone clearance on choledochoscopy,complications,and long-term clearance and recurrence rates were assessed.RESULTS Age,total bilirubin,direct bilirubin,Child-Pugh class,and stone location were similar between the 2 groups,but there was a significant difference in bile duct strictures,with biliary strictures more common in the 3D-PTOBF group(P=0.001).The median follow-up time was 55.0(55.0,512.0)days.The immediate stone clearance ratio(88.6%vs 27.1%,P=0.000)and stricture resolution ratio(97.1%vs 78.6%,P=0.001)in the 3D-PTOBF group were significantly greater than those in the PTOBF group.Postoperative complication(8.6%vs 41.4%,P=0.000)and stone recurrence rates(7.1%vs 38.6%,P=0.000)were significantly lower in the 3D-PTOBF group.CONCLUSION Three-dimensional visualization helps make one-step PTCSL a safe,effective,and promising treatment for patients with complicated primary hepatolithiasis.The perioperative and long-term outcomes are satisfactory for patients with complicated primary hepatolithiasis.This minimally invasive method has the potential to be used as a substitute for hepatobiliary surgery.
文摘The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration.In this paper,a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments(micro-RME),accurate grain-based modeling(AGBM)and upscaling methods based on reliability principles.Firstly,the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer(TIMA)and nanoindentation.The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov(K-S)test.Secondly,based on best distribution function of each mineral,the Monte Carlo simulations(MCS)and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus.Thirdly,the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established.The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship.The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples.
基金Supported by Natural Science Foundation of Sichuan Province,No.2022NSFSC1295the 2021 Annal Project of the General Hospital of Western Theater Command,No.2021-XZYG-B31.
文摘BACKGROUND When exposed to high-altitude environments,the cardiovascular system undergoes various changes,the performance and mechanisms of which remain controversial.AIM To summarize the latest research advancements and hot research points in the cardiovascular system at high altitude by conducting a bibliometric and visualization analysis.METHODS The literature was systematically retrieved and filtered using the Web of Science Core Collection of Science Citation Index Expanded.A visualization analysis of the identified publications was conducted employing CiteSpace and VOSviewer.RESULTS A total of 1674 publications were included in the study,with an observed annual increase in the number of publications spanning from 1990 to 2022.The United States of America emerged as the predominant contributor,while Universidad Peruana Cayetano Heredia stood out as the institution with the highest publication output.Notably,Jean-Paul Richalet demonstrated the highest productivity among researchers focusing on the cardiovascular system at high altitude.Furthermore,Peter Bärtsch emerged as the author with the highest number of cited articles.Keyword analysis identified hypoxia,exercise,acclimatization,acute and chronic mountain sickness,pulmonary hypertension,metabolism,and echocardiography as the primary research hot research points and emerging directions in the study of the cardiovascular system at high altitude.CONCLUSION Over the past 32 years,research on the cardiovascular system in high-altitude regions has been steadily increasing.Future research in this field may focus on areas such as hypoxia adaptation,metabolism,and cardiopulmonary exercise.Strengthening interdisciplinary and multi-team collaborations will facilitate further exploration of the pathophysiological mechanisms underlying cardiovascular changes in high-altitude environments and provide a theoretical basis for standardized disease diagnosis and treatment.
基金Supported by the National Natural Science Foundation of China(51274136 51704190)
文摘A new visualization method for studying the damage to gel structure caused by high salinity ions is explored by using the characteristics of suppression image signal of Mn^(2+) and nuclear magnetic resonance(NMR) imaging technique. The diffusion and distribution characteristics of Mn^(2+) in porous media-gel system were studied based on manganese chloride static diffusion and gel flooding experiments, and the gel's nuclear magnetic image and displacement pressure were tested. The results show that the diffusion of Mn^(2+)conforms to the Fick diffusion law in porous media-gel system, and the diffusion speed of Mn^(2+) increases and the area of gel image decreases gradually with the increase of concentration, and the image of gel decreases faster and the pressure drop of water drive is larger in flooding experiment of manganese chloride with higher concentration. Reaction-diffusion model with the reaction of Mn^(2+) with gel was established to study the concentration distribution characteristics of Mn^(2+). The model is validated by comparing the results with magnetic resonance imaging(MRI) experiments and the diffusion coefficient of Mn^(2+) equals 1.6 mm^2/h, and the minimum concentration of Mn^(2+) to impact gel NMR image signals is 2.5 g/L. The above results show that the diffusion of Mn^(2+) into the gel in the rock core inhibits the imaging signal of the gel and damages its strength, and the greater the concentration is, the greater the influence. Increase of adsorption amount of gel and reaction rate, reduction of diffusion time, and addition of ion adsorption isolator all can reduce the impact of Mn^(2+) on the gel.
基金funded by a Major Science and Technology Project of China National Petroleum Corporation(CNPC)entitled Research on Key Technologies for Efficient Production of Overseas Large Carbonate Reservoir”(2023ZZ19-08).
文摘Porous carbonate reservoirs,prevalent in the Middle East,are lithologically dominated by bioclastic limestones,exhibiting high porosity,low permeability,intricate pore structure,and strong heterogeneity.Waterflooding through horizontal wells is commonly used for exploiting these reservoirs.However,challenges persist,such as significant uncertainty and complex operational procedures regarding adjustment effects during the exploitation.The USH reservoir of the Cretaceous D oilfield,Oman exemplifies typical porous carbonate reservoirs.It initially underwent depletion drive using vertical wells,followed by horizontal well waterflooding in the late stage.Currently,the oilfield is confronted with substantial developmental challenges,involving the understanding of residual oil distribution,effective water cut control,and sustaining oil production since it has entered the late development stage.Employing a microscopic visualization displacement system equipped with electrodes,this study elucidated the waterflooding mechanisms and residual oil distribution in the late-stage development of the USH reservoir.The results reveal that the reservoir's vertical stacking patterns act as the main factor affecting the horizontal well waterflooding efficacy.Distinct water flow channels emerge under varying reservoir stacking patterns,with post-waterflooding residual oil predominantly distributed at the reservoir's top and bottom.The oil recovery can be enhanced by adjusting the waterflooding's flow line and intensity.The findings of this study will provide theoretical insights of waterflooding mechanisms and injection-production adjustments for exploiting other porous carbonate reservoirs in the Middle East through horizontal wells.
基金National Natural Science Foundation of China No.51905068Natural Science Foundation of Liaoning Province No.2020-HYLH-24The open research fund from the State Key Laboratory of Rolling and Automation,Northeastern University No.2020RALKFKT012。
文摘Magnesium alloy is one of the lightest metal structural materials.The weight is further reduced through the hollow structure.However,the hollow structure is easily damaged during processing.In order to maintain the hollow structure and to transfer the stresses during the high temperature deformation,the sand mandrel is proposed.In this paper,the hollow AZ31 magnesium alloy three-channel joint is studied by hot extrusion forming.Sand as one of solid granule medium is used to fill the hollow magnesium alloy.The extrusion temperatures are 230℃ and 300℃,respectively.The process parameters(die angle,temperature,bottom thickness,sidewall thickness,edge-to-middle ratio in bottom,bottom shape)of the hollow magnesium alloy are analyzed based on the results of experiments and the finite element method.The results are shown that the formability of the hollow magnesium alloy will be much better when the ratio of sidewall thickness to the bottom thickness is 1:1.5.Also when edge-to-middle ratio in bottom is about 1:1.5,a better forming product can be received.The best bottom shape in these experiments will be convex based on the forming results.The grain will be refined obviously after the extrusion.Also the microstructures will be shown as streamlines.And these lines will be well agreement with the mold in the corner.
文摘In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relationship and functions of the integrated database,the intelligent thermal control system and the efficient liquid cooling system in the ATMS are elaborated upon.For the complex thermal field regulation system and extreme space thermal environment,a modular simulation and thermal field planning method are proposed,and the feasibility of the planning algorithm is verified by numerical simulation.A solar array liquid cooling system is developed,and the system simulation results indicate that the temperatures of the solar arrays meet the requirements as the spacecraft flies by perihelion and aphelion.The advanced thermal management study supports the development of the SCOPE program and provides a reference for the thermal management in other deep-space exploration programs.