●AIM:To determine the teaching effects of a real-time three dimensional(3D)visualization system in the operating room for early-stage phacoemulsification training.●METHODS:A total of 10 ophthalmology residents of th...●AIM:To determine the teaching effects of a real-time three dimensional(3D)visualization system in the operating room for early-stage phacoemulsification training.●METHODS:A total of 10 ophthalmology residents of the first-year postgraduate were included.All the residents were novices to cataract surgery.Real-time cataract surgical observations were performed using a custom-built 3D visualization system.The training lasted 4wk(32h)in all.A modified International Council of Ophthalmology’s Ophthalmology Surgical Competency Assessment Rubric(ICO-OSCAR)containing 4 specific steps of cataract surgery was applied.The self-assessment(self)and expert-assessment(expert)were performed through the microsurgical attempts in the wet lab for each participant.●RESULTS:Compared with pre-training assessments(self 3.2±0.8,expert 2.5±0.6),the overall mean scores of posttraining(self 5.2±0.4,expert 4.7±0.6)were significantly improved after real-time observation training of 3D visualization system(P<0.05).Scores of 4 surgical items were significantly improved both self and expert assessment after training(P<0.05).●CONCLUSION:The 3D observation training provides novice ophthalmic residents with a better understanding of intraocular microsurgical techniques.It is a useful tool to improve teaching efficiency of surgical education.展开更多
To meet the needs of complex system equipment testing and realize the visual management of different test projects,this article establishes a test project management system based on the actual situation of aviation eq...To meet the needs of complex system equipment testing and realize the visual management of different test projects,this article establishes a test project management system based on the actual situation of aviation equipment testing system and the concept of big data,using visual data management and analysis techniques.This system solves the comprehensive management of multi-type test projects.Combined with the actual engineering verification process,it can be found that the system can realize the visual management of test projects and effectively ensure the smooth completion of the identification test project of a certain type of aircraft′s complex system.展开更多
In order to optimize the wood internal quality detection and evaluation system and improve the comprehensive utilization rate of wood,this paper invented a set of log internal defect detection and visualization system...In order to optimize the wood internal quality detection and evaluation system and improve the comprehensive utilization rate of wood,this paper invented a set of log internal defect detection and visualization system by using the ultrasonic dry coupling agent method.The detection and visualization analysis of internal log defects were realized through log specimen test.The main conclusions show that the accuracy,reliability and practicability of the system for detecting the internal defects of log specimens have been effectively verified.The system can make the edge of the detected image smooth by interpolation algorithm,and the edge detection algorithm can be used to detect and reflect the location of internal defects of logs accurately.The content mentioned above has good application value for meeting the requirement of increasing demand for wood resources and improving the automation level of wood nondestructive testing instruments.展开更多
AIM:To investigate the feasibility of teaching minimally invasive vitreoretinal surgery with a robot-assisted surgical system and a three-dimensional(3D) visualization system.METHODS:Enucleated porcine eyes were estab...AIM:To investigate the feasibility of teaching minimally invasive vitreoretinal surgery with a robot-assisted surgical system and a three-dimensional(3D) visualization system.METHODS:Enucleated porcine eyes were established as an animal model for removing foreign bodies.Forty medical students were recruited to remove foreign bodies to compare the traditional microscope and the 3D system.One junior resident performed the surgical task with manual and robot-assisted operations on 20 porcine eyes for each group.One senior surgeon evaluated the retinal invasion by a graded injury degree.The learning curve for minimally invasive vitreoretinal surgery was described.RESULTS:Compared with the robot-assisted group,the injury degree was higher in the manual group.For the first ten surgeries,the manual and robot-assisted groups had injuries of 2.60±1.35(4 to 0) and 1.80±1.62(4 to 0),respectively.For the last ten surgeries,the injury degrees were 1.90±1.20(3 to 0) and 0.80±0.42(1 to 0).Considering the manual and robot-assisted groups together,95%,75% and 60% of the students considered surgical manipulation with the 3D visualization system to be more comfortable,easier and clearer,respectively.CONCLUSION:The robot-assisted surgical system and 3D visualization system may have value in teaching minimally invasive vitreoretinal surgery.展开更多
This article analyzes creation methods of automated design system, presents design system of a house foundation from blocks. The creation methods of automated design system of a house foundation from blocks are discov...This article analyzes creation methods of automated design system, presents design system of a house foundation from blocks. The creation methods of automated design system of a house foundation from blocks are discovered with Unified Modeling Language. Analyzed objects-classes: block, specification, model. Graphical system can design foundation, form specification of objects and create 3D model of house foundation. There are several types and different dimensions of concrete blocks. The program optimally arranges selected blocks so that monolithic parts will be minimal volume. Program selects a house foundation blocks from database by using ActiveX Data Objects technology, which by programming method connects drawing and database. Drawing's graphical objects have additional data from which exchange of data between graphical system and database is executed. Visualization system and example of house foundation from blocks project with specifications is presented. Creation problems of automated design system are discussed and conclusions are made.展开更多
ABSTRACT: This paper generalizes the makeup and forming dynamic mechanism of natural disaster systems, principles and methods of comprehensive division of natural disasters, as well as structure, function and up-build...ABSTRACT: This paper generalizes the makeup and forming dynamic mechanism of natural disaster systems, principles and methods of comprehensive division of natural disasters, as well as structure, function and up-build routes of map and file information visualization system (MFIVS). Taking the Changjiang(Yangtze) Valley as an example, on the basis of revealing up the integrated mechanism on the formations of its natural disasters and its distributing law, thereafter, the paper relies on the MFIVS technique, adopts two top-down and bottom-up approaches to study a comprehensive division of natural disasters. It is relatively objective and precise that the required division results include three natural disaster sections and nine natural disaster sub-sections, which can not only provide a scientific basis for utilizing natural resources and controlling natural disaster and environmental degradation, but also be illuminated to a concise, practical and effective technique on comprehensive division.展开更多
[Objective] The objective of this paper was to study the simulation and implementation of structure and growth visualization system of artificial mixed stand. [Method] The mixed stand structure visualization model and...[Objective] The objective of this paper was to study the simulation and implementation of structure and growth visualization system of artificial mixed stand. [Method] The mixed stand structure visualization model and growth visualization model were built on the base of the characteristics of mixed stand structure and the relationship between growth and environment; and the C# language and MOGRE graphics engine were used to establish the mixed stand structure and growth visualization system. [Result] The mixed stand structure visualization model and growth visualization model were built, as well as the mixed stand structure and growth visualization system. [Conclusion] This paper realized the visualization simulation of the mixed stand structure and growth.展开更多
With the development of virtual reality application in the medical field, two-dimensional medical image of the three-dimensional visualization technology made possible. Surgery gets into minimally invasive operation m...With the development of virtual reality application in the medical field, two-dimensional medical image of the three-dimensional visualization technology made possible. Surgery gets into minimally invasive operation microscopy Era, and gradually becomes a new research hotspot. This paper studies the realization of two-dimensional medical im-age 3D reconstruction visualization system method, and the overall process and management module. Using the main technology of VTK (The Visualization Toolkit) to achieve a two-dimensional medical image three-dimensional visua-lization system, which can help the physician to obtain help clinical diagnosis Information and play an important role in treatment, accurate positioning in diseased tissue and tumor early diagnosis.展开更多
In recent years, text visualization has been widely acknowledged as an effective approach for understanding the structure and patterns hidden in complicated textual information. In this paper, we propose a new visuali...In recent years, text visualization has been widely acknowledged as an effective approach for understanding the structure and patterns hidden in complicated textual information. In this paper, we propose a new visualization system called TextInsight with two of our contributions. Firstly, a textual entropy theory is introduced to encode the semantic importance distribution in the corpus. Based on the proposed multidimensional joint probability histogram in vector fields, the improved algorithm provides a novel way to position valuable information in massive short texts accurately. Secondly, a map-like metaphor is generated to visualize the textual topics and their relationships. For the problem of over-segmentation in the layout and clustering procedure, we propose an optimization algorithm combining Affinity Propagation(AP) and MultiDimensional Scaling(MDS), and the improved geographical representation is more comprehensible and aesthetically appealing. Our experimental results and initial user feedback suggest that this system is effective in aiding text analysis.展开更多
With the development of biomolecular modeling and simulation,especially implicit solvent modeling,higher requirements are set for the stability,efficiency and mesh quality of molecular mesh generation software.In this...With the development of biomolecular modeling and simulation,especially implicit solvent modeling,higher requirements are set for the stability,efficiency and mesh quality of molecular mesh generation software.In this review,we summarize the recent works in biomolecular mesh generation and molecular visualization.First,we introduce various definitions of molecular surface and corresponding meshing software.Second,as the mesh quality significantly influences biomolecular simulation,we investigate some remeshing methods in the fields of computer graphics and molecular modeling.Then,we show the application of biomolecular mesh in the boundary element method(BEM)and the finite element method(FEM).Finally,to conveniently visualize the numerical results based on the mesh,we present two types of molecular visualization systems.展开更多
To describe the dynamic process of flood routing intuitively and realistically when storm surge disaster occurs,a method for ArcGIS data and Google Earth(GE) data integration is proposed,which realizes the importing a...To describe the dynamic process of flood routing intuitively and realistically when storm surge disaster occurs,a method for ArcGIS data and Google Earth(GE) data integration is proposed,which realizes the importing and integrating of basic geographic information into GE. Based on SketchUp and AutoCAD software,threedimension(3D) visualization of seawall and other tidal defense structures is achieved. By employing Microsoft Foundation Class Library(MFC),the related system modules and storm surge flood routing dynamic visualization system are developed. Therefore,dynamic visualization of flood routing process and interactive query of submerged area and inundated depth are implemented. A practical application case study of Tianjin Binhai New Area provides decision-making support for coastal seawall planning and storm surge disaster prevention and reduction.展开更多
Blasting is routinely carried out at various resource extraction sites, even in urban areas. As a consequence of this, residents around urban quarry sites are affected by ground vibration induced by blasting on a regu...Blasting is routinely carried out at various resource extraction sites, even in urban areas. As a consequence of this, residents around urban quarry sites are affected by ground vibration induced by blasting on a regular basis. In this study, a prediction and visualization system for ground vibrations is developed for the purpose of reducing the adverse psychological effects of blasting. The system consists of predicting ground vibration using an Artificial Neural Network (ANN) and visualizing it on an online map using Web-GIS. A prediction model using ANN that learned the optimum weight by taking 50 sets of data indicated a regression value of 0.859 and a Mean Square Error (MSE) of 0.0228. Compared with previous researches, these values are not bad results. Peak Particle Velocity (PPV) was used as a metric to measure ground vibration intensity. A color contour is generated using GIS tools based on the PPV value of each prediction point. The system is completed by overlaying the contour onto a basic map in a website. The basic map shows the surrounding area through the use of Google Maps data. This system can be used by anyone with access to the internet and a browser, requiring no special software or hardware. In addition, mining operations can utilize the data to modify blasting design and planning to minimize ground vibration. In conclusion, this system has the potential to alleviate the worries of surrounding residents caused by ground vibrations from blasting due to the fact that they can personally check the predicted vibration around their locale. Furthermore, since this data will be publicly available on the internet, it is also possible that this system can contribute to research in other fields.展开更多
Background Data-driven event analysis has gradually become the backbone of modern competitive sports analysis. Competitive sports data analysis tasks increasingly use computer vision and machine-learning models for in...Background Data-driven event analysis has gradually become the backbone of modern competitive sports analysis. Competitive sports data analysis tasks increasingly use computer vision and machine-learning models for intelligent data analysis. Existing sports visualization systems focus on the player–team data visualization, which is not intuitive enough for team season win–loss data and game time-series data visualization and neglects the prediction of all-star players. Methods This study used an interactive visualization system designed with parallel aggregated ordered hypergraph dynamic hypergraphs, Calliope visualization data story technology,and i Storyline narrative visualization technology to visualize the regular statistics and game time data of players and teams. NPIPVis includes dynamic hypergraphs of a team’s wins and losses and game plot narrative visualization components. In addition, an integrated learning-based all-star player prediction model, SRR-voting, which starts from the existing minority and majority samples, was proposed using the synthetic minority oversampling technique and Random Under Sampler methods to generate and eliminate samples of a certain size to balance the number of allstar and average players in the datasets. Next, a random forest algorithm was introduced to extract and construct the features of players and combined with the voting integrated model to predict the all-star players, using GridSearch CV, to optimize the hyperparameters of each model in integrated learning and then combined with five-fold cross-validation to improve the generalization ability of the model. Finally, the SHapley Additive ex Planations(SHAP) model was introduced to enhance the interpretability of the model. Results The experimental results of comparing the SRR-voting model with six common models show that the accuracy, F1-score, and recall metrics are significantly improved, which verifies the effectiveness and practicality of the SRR-voting model. Conclusions This study combines data visualization and machine learning to design a National Basketball Association data visualization system to help the general audience visualize game data and predict all-star players;this can also be extended to other sports events or related fields.展开更多
A visualization system for the official and scientific management has been designed on C++. By this system, the information of database has been shown to users intuitively, which makes it possible for users to be free...A visualization system for the official and scientific management has been designed on C++. By this system, the information of database has been shown to users intuitively, which makes it possible for users to be free from the data sea. The system can realize the information mining and the integrated display, at the same time, improve the information’s constructive level and integration degree.展开更多
Taylor vortex flow between two concentric rotating cylinders with finite axial length includes various patterns of laminar and turbulent flows, and its behavior has attracted great interests. When mode bifurcation occ...Taylor vortex flow between two concentric rotating cylinders with finite axial length includes various patterns of laminar and turbulent flows, and its behavior has attracted great interests. When mode bifurcation occurs, quantitative parameters such as the volume-averaged energy change rapidly. It is important to visualize the behaviors of vortices. In this study, a three-dimensional visualization system with respect to time is devised. This system can change the viewpoint of flow visualization, and we can observe the track of a vortex from any point. The volume-averaged energy is projected to the track of the center of a vortex. The proposed system can help to investigate the relationship between the mode bifurcation process and the volume-averaged energy.展开更多
This work develops a system to visualize the information for radar systems interfaces. It is a flexible, portable software system that allows to be used for radars that have different technologies and that is able to ...This work develops a system to visualize the information for radar systems interfaces. It is a flexible, portable software system that allows to be used for radars that have different technologies and that is able to be adapted to the specific needs of each application domain in an efficient way. Replacing the visualization and processing units on existing radar platforms by this new system, a practical and inexpensive improvement is achieved.展开更多
BACKGROUND When exposed to high-altitude environments,the cardiovascular system undergoes various changes,the performance and mechanisms of which remain controversial.AIM To summarize the latest research advancements ...BACKGROUND When exposed to high-altitude environments,the cardiovascular system undergoes various changes,the performance and mechanisms of which remain controversial.AIM To summarize the latest research advancements and hot research points in the cardiovascular system at high altitude by conducting a bibliometric and visualization analysis.METHODS The literature was systematically retrieved and filtered using the Web of Science Core Collection of Science Citation Index Expanded.A visualization analysis of the identified publications was conducted employing CiteSpace and VOSviewer.RESULTS A total of 1674 publications were included in the study,with an observed annual increase in the number of publications spanning from 1990 to 2022.The United States of America emerged as the predominant contributor,while Universidad Peruana Cayetano Heredia stood out as the institution with the highest publication output.Notably,Jean-Paul Richalet demonstrated the highest productivity among researchers focusing on the cardiovascular system at high altitude.Furthermore,Peter Bärtsch emerged as the author with the highest number of cited articles.Keyword analysis identified hypoxia,exercise,acclimatization,acute and chronic mountain sickness,pulmonary hypertension,metabolism,and echocardiography as the primary research hot research points and emerging directions in the study of the cardiovascular system at high altitude.CONCLUSION Over the past 32 years,research on the cardiovascular system in high-altitude regions has been steadily increasing.Future research in this field may focus on areas such as hypoxia adaptation,metabolism,and cardiopulmonary exercise.Strengthening interdisciplinary and multi-team collaborations will facilitate further exploration of the pathophysiological mechanisms underlying cardiovascular changes in high-altitude environments and provide a theoretical basis for standardized disease diagnosis and treatment.展开更多
The increasing interest in exploring the correlation between personal-ity traits and real-life individual characteristics has been driven by the growing popularity of the Myers–Briggs Type Indicator(MBTI)on social me...The increasing interest in exploring the correlation between personal-ity traits and real-life individual characteristics has been driven by the growing popularity of the Myers–Briggs Type Indicator(MBTI)on social media plat-forms.To investigate this correlation,we conduct an analysis on a Myers–Briggs Type Indicator(MBTI)-demographic dataset and present MBTIviz,a visualiza-tion system that enables researchers to conduct a comprehensive and accessible analysis of the correlation between personality and demographic variables such as occupation and nationality.While humanities and computer disciplines provide valuable insights into the behavior of small groups and data analysis,analysing demographic data with personality information poses challenges due to the com-plexity of big data.Additionally,the correlation analysis table commonly used in the humanities does not offer an intuitive representation when examining the relationship between variables.To address these issues,our system provides an integrated view of statistical data that presents all demographic information in a single visual format and a more informative and visually appealing approach to presenting correlation data,facilitating further exploration of the linkages between personality traits and real-life individual characteristics.It also includes machine learning predictive views that help nonexpert users understand their personality traits and provide career predictions based on demographic data.In this paper,we utilize the MBTIviz system to analyse the MBTI-demographic dataset,calcu-lating age,gender,and occupation percentages for each MBTI and studying the correlation between MBTI,occupation,and nationality.展开更多
High-strength steels are mainly composed of medium-or low-temperature microstructures,such as bainite or martensite,with coherent transformation characteristics.This type of microstructure has a high density of disloc...High-strength steels are mainly composed of medium-or low-temperature microstructures,such as bainite or martensite,with coherent transformation characteristics.This type of microstructure has a high density of dislocations and fine crystallographic structural units,which ease the coordinated matching of high strength,toughness,and plasticity.Meanwhile,given its excellent welding perform-ance,high-strength steel has been widely used in major engineering constructions,such as pipelines,ships,and bridges.However,visual-ization and digitization of the effective units of these coherent transformation structures using traditional methods(optical microscopy and scanning electron microscopy)is difficult due to their complex morphology.Moreover,the establishment of quantitative relationships with macroscopic mechanical properties and key process parameters presents additional difficulty.This article reviews the latest progress in microstructural visualization and digitization of high-strength steel,with a focus on the application of crystallographic methods in the development of high-strength steel plates and welding.We obtained the crystallographic data(Euler angle)of the transformed microstruc-tures through electron back-scattering diffraction and combined them with the calculation of inverse transformation from bainite or martensite to austenite to determine the reconstruction of high-temperature parent austenite and orientation relationship(OR)during con-tinuous cooling transformation.Furthermore,visualization of crystallographic packets,blocks,and variants based on actual OR and digit-ization of various grain boundaries can be effectively completed to establish quantitative relationships with alloy composition and key process parameters,thereby providing reverse design guidance for the development of high-strength steel.展开更多
BACKGROUND Biliary stone disease is a highly prevalent condition and a leading cause of hospitalization worldwide.Hepatolithiasis with associated strictures has high residual and recurrence rates after traditional mul...BACKGROUND Biliary stone disease is a highly prevalent condition and a leading cause of hospitalization worldwide.Hepatolithiasis with associated strictures has high residual and recurrence rates after traditional multisession percutaneous transhepatic cholangioscopic lithotripsy(PTCSL).AIM To study one-step PTCSL using the percutaneous transhepatic one-step biliary fistulation(PTOBF)technique guided by three-dimensional(3D)visualization.METHODS This was a retrospective,single-center study analyzing,140 patients who,between October 2016 and October 2023,underwent one-step PTCSL for hepatolithiasis.The patients were divided into two groups:The 3D-PTOBF group and the PTOBF group.Stone clearance on choledochoscopy,complications,and long-term clearance and recurrence rates were assessed.RESULTS Age,total bilirubin,direct bilirubin,Child-Pugh class,and stone location were similar between the 2 groups,but there was a significant difference in bile duct strictures,with biliary strictures more common in the 3D-PTOBF group(P=0.001).The median follow-up time was 55.0(55.0,512.0)days.The immediate stone clearance ratio(88.6%vs 27.1%,P=0.000)and stricture resolution ratio(97.1%vs 78.6%,P=0.001)in the 3D-PTOBF group were significantly greater than those in the PTOBF group.Postoperative complication(8.6%vs 41.4%,P=0.000)and stone recurrence rates(7.1%vs 38.6%,P=0.000)were significantly lower in the 3D-PTOBF group.CONCLUSION Three-dimensional visualization helps make one-step PTCSL a safe,effective,and promising treatment for patients with complicated primary hepatolithiasis.The perioperative and long-term outcomes are satisfactory for patients with complicated primary hepatolithiasis.This minimally invasive method has the potential to be used as a substitute for hepatobiliary surgery.展开更多
基金Supported by research grants from the National Key Research and Development Program of China(No.2020YFE0204400)the National Natural Science Foundation of China(No.82271042+1 种基金No.52203191)the Zhejiang Province Key Research and Development Program(No.2023C03090).
文摘●AIM:To determine the teaching effects of a real-time three dimensional(3D)visualization system in the operating room for early-stage phacoemulsification training.●METHODS:A total of 10 ophthalmology residents of the first-year postgraduate were included.All the residents were novices to cataract surgery.Real-time cataract surgical observations were performed using a custom-built 3D visualization system.The training lasted 4wk(32h)in all.A modified International Council of Ophthalmology’s Ophthalmology Surgical Competency Assessment Rubric(ICO-OSCAR)containing 4 specific steps of cataract surgery was applied.The self-assessment(self)and expert-assessment(expert)were performed through the microsurgical attempts in the wet lab for each participant.●RESULTS:Compared with pre-training assessments(self 3.2±0.8,expert 2.5±0.6),the overall mean scores of posttraining(self 5.2±0.4,expert 4.7±0.6)were significantly improved after real-time observation training of 3D visualization system(P<0.05).Scores of 4 surgical items were significantly improved both self and expert assessment after training(P<0.05).●CONCLUSION:The 3D observation training provides novice ophthalmic residents with a better understanding of intraocular microsurgical techniques.It is a useful tool to improve teaching efficiency of surgical education.
文摘To meet the needs of complex system equipment testing and realize the visual management of different test projects,this article establishes a test project management system based on the actual situation of aviation equipment testing system and the concept of big data,using visual data management and analysis techniques.This system solves the comprehensive management of multi-type test projects.Combined with the actual engineering verification process,it can be found that the system can realize the visual management of test projects and effectively ensure the smooth completion of the identification test project of a certain type of aircraft′s complex system.
文摘In order to optimize the wood internal quality detection and evaluation system and improve the comprehensive utilization rate of wood,this paper invented a set of log internal defect detection and visualization system by using the ultrasonic dry coupling agent method.The detection and visualization analysis of internal log defects were realized through log specimen test.The main conclusions show that the accuracy,reliability and practicability of the system for detecting the internal defects of log specimens have been effectively verified.The system can make the edge of the detected image smooth by interpolation algorithm,and the edge detection algorithm can be used to detect and reflect the location of internal defects of logs accurately.The content mentioned above has good application value for meeting the requirement of increasing demand for wood resources and improving the automation level of wood nondestructive testing instruments.
基金Supported by the National Natural Science Foundation of China (No.81700884,No.81900910)Zhejiang Provincial Natural Science Foundation of China (No.LGF21H120005,No.LQ19H120003)+1 种基金Key Project jointly constructed by Zhejiang Province and Ministry (No.WKJZJ-2037)Basic Scientific Research Project of Wenzhou (No.Y20210194)。
文摘AIM:To investigate the feasibility of teaching minimally invasive vitreoretinal surgery with a robot-assisted surgical system and a three-dimensional(3D) visualization system.METHODS:Enucleated porcine eyes were established as an animal model for removing foreign bodies.Forty medical students were recruited to remove foreign bodies to compare the traditional microscope and the 3D system.One junior resident performed the surgical task with manual and robot-assisted operations on 20 porcine eyes for each group.One senior surgeon evaluated the retinal invasion by a graded injury degree.The learning curve for minimally invasive vitreoretinal surgery was described.RESULTS:Compared with the robot-assisted group,the injury degree was higher in the manual group.For the first ten surgeries,the manual and robot-assisted groups had injuries of 2.60±1.35(4 to 0) and 1.80±1.62(4 to 0),respectively.For the last ten surgeries,the injury degrees were 1.90±1.20(3 to 0) and 0.80±0.42(1 to 0).Considering the manual and robot-assisted groups together,95%,75% and 60% of the students considered surgical manipulation with the 3D visualization system to be more comfortable,easier and clearer,respectively.CONCLUSION:The robot-assisted surgical system and 3D visualization system may have value in teaching minimally invasive vitreoretinal surgery.
文摘This article analyzes creation methods of automated design system, presents design system of a house foundation from blocks. The creation methods of automated design system of a house foundation from blocks are discovered with Unified Modeling Language. Analyzed objects-classes: block, specification, model. Graphical system can design foundation, form specification of objects and create 3D model of house foundation. There are several types and different dimensions of concrete blocks. The program optimally arranges selected blocks so that monolithic parts will be minimal volume. Program selects a house foundation blocks from database by using ActiveX Data Objects technology, which by programming method connects drawing and database. Drawing's graphical objects have additional data from which exchange of data between graphical system and database is executed. Visualization system and example of house foundation from blocks project with specifications is presented. Creation problems of automated design system are discussed and conclusions are made.
基金Under the auspices of President Foundation of the Chinese Academy of Sciences(1999).
文摘ABSTRACT: This paper generalizes the makeup and forming dynamic mechanism of natural disaster systems, principles and methods of comprehensive division of natural disasters, as well as structure, function and up-build routes of map and file information visualization system (MFIVS). Taking the Changjiang(Yangtze) Valley as an example, on the basis of revealing up the integrated mechanism on the formations of its natural disasters and its distributing law, thereafter, the paper relies on the MFIVS technique, adopts two top-down and bottom-up approaches to study a comprehensive division of natural disasters. It is relatively objective and precise that the required division results include three natural disaster sections and nine natural disaster sub-sections, which can not only provide a scientific basis for utilizing natural resources and controlling natural disaster and environmental degradation, but also be illuminated to a concise, practical and effective technique on comprehensive division.
基金Supported by the Forestry Industry Public Welfare Project of China(201104028)the National Natural Science Foundation of China(31170590)the Special Fund for Statelevel Public Welfare Scientiic Research Institute of China(IFRIT201103)~~
文摘[Objective] The objective of this paper was to study the simulation and implementation of structure and growth visualization system of artificial mixed stand. [Method] The mixed stand structure visualization model and growth visualization model were built on the base of the characteristics of mixed stand structure and the relationship between growth and environment; and the C# language and MOGRE graphics engine were used to establish the mixed stand structure and growth visualization system. [Result] The mixed stand structure visualization model and growth visualization model were built, as well as the mixed stand structure and growth visualization system. [Conclusion] This paper realized the visualization simulation of the mixed stand structure and growth.
文摘With the development of virtual reality application in the medical field, two-dimensional medical image of the three-dimensional visualization technology made possible. Surgery gets into minimally invasive operation microscopy Era, and gradually becomes a new research hotspot. This paper studies the realization of two-dimensional medical im-age 3D reconstruction visualization system method, and the overall process and management module. Using the main technology of VTK (The Visualization Toolkit) to achieve a two-dimensional medical image three-dimensional visua-lization system, which can help the physician to obtain help clinical diagnosis Information and play an important role in treatment, accurate positioning in diseased tissue and tumor early diagnosis.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA7013033)
文摘In recent years, text visualization has been widely acknowledged as an effective approach for understanding the structure and patterns hidden in complicated textual information. In this paper, we propose a new visualization system called TextInsight with two of our contributions. Firstly, a textual entropy theory is introduced to encode the semantic importance distribution in the corpus. Based on the proposed multidimensional joint probability histogram in vector fields, the improved algorithm provides a novel way to position valuable information in massive short texts accurately. Secondly, a map-like metaphor is generated to visualize the textual topics and their relationships. For the problem of over-segmentation in the layout and clustering procedure, we propose an optimization algorithm combining Affinity Propagation(AP) and MultiDimensional Scaling(MDS), and the improved geographical representation is more comprehensible and aesthetically appealing. Our experimental results and initial user feedback suggest that this system is effective in aiding text analysis.
基金supported by the Science Challenge Program under Grant TZ2016003by the National Key Research and Development Program of Ministry of Science and Technology under Grant 2016YFB0201304the National Natural Science Foundation of China(61772523,21573274,11771435,and 61620106003).
文摘With the development of biomolecular modeling and simulation,especially implicit solvent modeling,higher requirements are set for the stability,efficiency and mesh quality of molecular mesh generation software.In this review,we summarize the recent works in biomolecular mesh generation and molecular visualization.First,we introduce various definitions of molecular surface and corresponding meshing software.Second,as the mesh quality significantly influences biomolecular simulation,we investigate some remeshing methods in the fields of computer graphics and molecular modeling.Then,we show the application of biomolecular mesh in the boundary element method(BEM)and the finite element method(FEM).Finally,to conveniently visualize the numerical results based on the mesh,we present two types of molecular visualization systems.
基金State Programs of Science and Technology Development of China(No.2013CB035902)Foun-dation for Innovative Research Groups of National Natural Science Foundation of China(No.51021004)Na-tional Natural Science Foundation of China(No.51079096)
文摘To describe the dynamic process of flood routing intuitively and realistically when storm surge disaster occurs,a method for ArcGIS data and Google Earth(GE) data integration is proposed,which realizes the importing and integrating of basic geographic information into GE. Based on SketchUp and AutoCAD software,threedimension(3D) visualization of seawall and other tidal defense structures is achieved. By employing Microsoft Foundation Class Library(MFC),the related system modules and storm surge flood routing dynamic visualization system are developed. Therefore,dynamic visualization of flood routing process and interactive query of submerged area and inundated depth are implemented. A practical application case study of Tianjin Binhai New Area provides decision-making support for coastal seawall planning and storm surge disaster prevention and reduction.
文摘Blasting is routinely carried out at various resource extraction sites, even in urban areas. As a consequence of this, residents around urban quarry sites are affected by ground vibration induced by blasting on a regular basis. In this study, a prediction and visualization system for ground vibrations is developed for the purpose of reducing the adverse psychological effects of blasting. The system consists of predicting ground vibration using an Artificial Neural Network (ANN) and visualizing it on an online map using Web-GIS. A prediction model using ANN that learned the optimum weight by taking 50 sets of data indicated a regression value of 0.859 and a Mean Square Error (MSE) of 0.0228. Compared with previous researches, these values are not bad results. Peak Particle Velocity (PPV) was used as a metric to measure ground vibration intensity. A color contour is generated using GIS tools based on the PPV value of each prediction point. The system is completed by overlaying the contour onto a basic map in a website. The basic map shows the surrounding area through the use of Google Maps data. This system can be used by anyone with access to the internet and a browser, requiring no special software or hardware. In addition, mining operations can utilize the data to modify blasting design and planning to minimize ground vibration. In conclusion, this system has the potential to alleviate the worries of surrounding residents caused by ground vibrations from blasting due to the fact that they can personally check the predicted vibration around their locale. Furthermore, since this data will be publicly available on the internet, it is also possible that this system can contribute to research in other fields.
基金Supported by the National Natural Science Foundation of China(61862018)the Subject of the Training Plan for Thousands of Young and Middle-aged Backbone Teachers in Guangxi Colleges and Universities(2020QGRW017)。
文摘Background Data-driven event analysis has gradually become the backbone of modern competitive sports analysis. Competitive sports data analysis tasks increasingly use computer vision and machine-learning models for intelligent data analysis. Existing sports visualization systems focus on the player–team data visualization, which is not intuitive enough for team season win–loss data and game time-series data visualization and neglects the prediction of all-star players. Methods This study used an interactive visualization system designed with parallel aggregated ordered hypergraph dynamic hypergraphs, Calliope visualization data story technology,and i Storyline narrative visualization technology to visualize the regular statistics and game time data of players and teams. NPIPVis includes dynamic hypergraphs of a team’s wins and losses and game plot narrative visualization components. In addition, an integrated learning-based all-star player prediction model, SRR-voting, which starts from the existing minority and majority samples, was proposed using the synthetic minority oversampling technique and Random Under Sampler methods to generate and eliminate samples of a certain size to balance the number of allstar and average players in the datasets. Next, a random forest algorithm was introduced to extract and construct the features of players and combined with the voting integrated model to predict the all-star players, using GridSearch CV, to optimize the hyperparameters of each model in integrated learning and then combined with five-fold cross-validation to improve the generalization ability of the model. Finally, the SHapley Additive ex Planations(SHAP) model was introduced to enhance the interpretability of the model. Results The experimental results of comparing the SRR-voting model with six common models show that the accuracy, F1-score, and recall metrics are significantly improved, which verifies the effectiveness and practicality of the SRR-voting model. Conclusions This study combines data visualization and machine learning to design a National Basketball Association data visualization system to help the general audience visualize game data and predict all-star players;this can also be extended to other sports events or related fields.
文摘A visualization system for the official and scientific management has been designed on C++. By this system, the information of database has been shown to users intuitively, which makes it possible for users to be free from the data sea. The system can realize the information mining and the integrated display, at the same time, improve the information’s constructive level and integration degree.
文摘Taylor vortex flow between two concentric rotating cylinders with finite axial length includes various patterns of laminar and turbulent flows, and its behavior has attracted great interests. When mode bifurcation occurs, quantitative parameters such as the volume-averaged energy change rapidly. It is important to visualize the behaviors of vortices. In this study, a three-dimensional visualization system with respect to time is devised. This system can change the viewpoint of flow visualization, and we can observe the track of a vortex from any point. The volume-averaged energy is projected to the track of the center of a vortex. The proposed system can help to investigate the relationship between the mode bifurcation process and the volume-averaged energy.
文摘This work develops a system to visualize the information for radar systems interfaces. It is a flexible, portable software system that allows to be used for radars that have different technologies and that is able to be adapted to the specific needs of each application domain in an efficient way. Replacing the visualization and processing units on existing radar platforms by this new system, a practical and inexpensive improvement is achieved.
基金Supported by Natural Science Foundation of Sichuan Province,No.2022NSFSC1295the 2021 Annal Project of the General Hospital of Western Theater Command,No.2021-XZYG-B31.
文摘BACKGROUND When exposed to high-altitude environments,the cardiovascular system undergoes various changes,the performance and mechanisms of which remain controversial.AIM To summarize the latest research advancements and hot research points in the cardiovascular system at high altitude by conducting a bibliometric and visualization analysis.METHODS The literature was systematically retrieved and filtered using the Web of Science Core Collection of Science Citation Index Expanded.A visualization analysis of the identified publications was conducted employing CiteSpace and VOSviewer.RESULTS A total of 1674 publications were included in the study,with an observed annual increase in the number of publications spanning from 1990 to 2022.The United States of America emerged as the predominant contributor,while Universidad Peruana Cayetano Heredia stood out as the institution with the highest publication output.Notably,Jean-Paul Richalet demonstrated the highest productivity among researchers focusing on the cardiovascular system at high altitude.Furthermore,Peter Bärtsch emerged as the author with the highest number of cited articles.Keyword analysis identified hypoxia,exercise,acclimatization,acute and chronic mountain sickness,pulmonary hypertension,metabolism,and echocardiography as the primary research hot research points and emerging directions in the study of the cardiovascular system at high altitude.CONCLUSION Over the past 32 years,research on the cardiovascular system in high-altitude regions has been steadily increasing.Future research in this field may focus on areas such as hypoxia adaptation,metabolism,and cardiopulmonary exercise.Strengthening interdisciplinary and multi-team collaborations will facilitate further exploration of the pathophysiological mechanisms underlying cardiovascular changes in high-altitude environments and provide a theoretical basis for standardized disease diagnosis and treatment.
基金The paper is supported by the NationalNature Science Foundation of China(Grant No.61100053)a research grant from Intel Asia-PacificResearch and Development Co.,Ltd.
文摘The increasing interest in exploring the correlation between personal-ity traits and real-life individual characteristics has been driven by the growing popularity of the Myers–Briggs Type Indicator(MBTI)on social media plat-forms.To investigate this correlation,we conduct an analysis on a Myers–Briggs Type Indicator(MBTI)-demographic dataset and present MBTIviz,a visualiza-tion system that enables researchers to conduct a comprehensive and accessible analysis of the correlation between personality and demographic variables such as occupation and nationality.While humanities and computer disciplines provide valuable insights into the behavior of small groups and data analysis,analysing demographic data with personality information poses challenges due to the com-plexity of big data.Additionally,the correlation analysis table commonly used in the humanities does not offer an intuitive representation when examining the relationship between variables.To address these issues,our system provides an integrated view of statistical data that presents all demographic information in a single visual format and a more informative and visually appealing approach to presenting correlation data,facilitating further exploration of the linkages between personality traits and real-life individual characteristics.It also includes machine learning predictive views that help nonexpert users understand their personality traits and provide career predictions based on demographic data.In this paper,we utilize the MBTIviz system to analyse the MBTI-demographic dataset,calcu-lating age,gender,and occupation percentages for each MBTI and studying the correlation between MBTI,occupation,and nationality.
基金supported by the National Key Research and Development Project of China(Nos.2022YFB3708200 and 2021YFB3703500)the National Natural Science Foundation of China(Nos.52271089 and 52001023).
文摘High-strength steels are mainly composed of medium-or low-temperature microstructures,such as bainite or martensite,with coherent transformation characteristics.This type of microstructure has a high density of dislocations and fine crystallographic structural units,which ease the coordinated matching of high strength,toughness,and plasticity.Meanwhile,given its excellent welding perform-ance,high-strength steel has been widely used in major engineering constructions,such as pipelines,ships,and bridges.However,visual-ization and digitization of the effective units of these coherent transformation structures using traditional methods(optical microscopy and scanning electron microscopy)is difficult due to their complex morphology.Moreover,the establishment of quantitative relationships with macroscopic mechanical properties and key process parameters presents additional difficulty.This article reviews the latest progress in microstructural visualization and digitization of high-strength steel,with a focus on the application of crystallographic methods in the development of high-strength steel plates and welding.We obtained the crystallographic data(Euler angle)of the transformed microstruc-tures through electron back-scattering diffraction and combined them with the calculation of inverse transformation from bainite or martensite to austenite to determine the reconstruction of high-temperature parent austenite and orientation relationship(OR)during con-tinuous cooling transformation.Furthermore,visualization of crystallographic packets,blocks,and variants based on actual OR and digit-ization of various grain boundaries can be effectively completed to establish quantitative relationships with alloy composition and key process parameters,thereby providing reverse design guidance for the development of high-strength steel.
基金Supported by The Key Medical Specialty Nurturing Program of Foshan During The 14th Five-Year Plan Period,No.FSPY145205The Medical Research Project of Foshan Health Bureau,No.20230814A010024+1 种基金The Guangzhou Science and Technology Plan Project,No.202102010251the Guangdong Science and Technology Program,No.2017ZC0222.
文摘BACKGROUND Biliary stone disease is a highly prevalent condition and a leading cause of hospitalization worldwide.Hepatolithiasis with associated strictures has high residual and recurrence rates after traditional multisession percutaneous transhepatic cholangioscopic lithotripsy(PTCSL).AIM To study one-step PTCSL using the percutaneous transhepatic one-step biliary fistulation(PTOBF)technique guided by three-dimensional(3D)visualization.METHODS This was a retrospective,single-center study analyzing,140 patients who,between October 2016 and October 2023,underwent one-step PTCSL for hepatolithiasis.The patients were divided into two groups:The 3D-PTOBF group and the PTOBF group.Stone clearance on choledochoscopy,complications,and long-term clearance and recurrence rates were assessed.RESULTS Age,total bilirubin,direct bilirubin,Child-Pugh class,and stone location were similar between the 2 groups,but there was a significant difference in bile duct strictures,with biliary strictures more common in the 3D-PTOBF group(P=0.001).The median follow-up time was 55.0(55.0,512.0)days.The immediate stone clearance ratio(88.6%vs 27.1%,P=0.000)and stricture resolution ratio(97.1%vs 78.6%,P=0.001)in the 3D-PTOBF group were significantly greater than those in the PTOBF group.Postoperative complication(8.6%vs 41.4%,P=0.000)and stone recurrence rates(7.1%vs 38.6%,P=0.000)were significantly lower in the 3D-PTOBF group.CONCLUSION Three-dimensional visualization helps make one-step PTCSL a safe,effective,and promising treatment for patients with complicated primary hepatolithiasis.The perioperative and long-term outcomes are satisfactory for patients with complicated primary hepatolithiasis.This minimally invasive method has the potential to be used as a substitute for hepatobiliary surgery.