Few-mode and multi-core fibers are proposed and demonstrated for contactless vital signs monitoring in this paper.In-line optical fiber interferometers using few-mode and multi-core fibers are designed and offset spli...Few-mode and multi-core fibers are proposed and demonstrated for contactless vital signs monitoring in this paper.In-line optical fiber interferometers using few-mode and multi-core fibers are designed and offset splicing is utilized for mode excitation.Extinction ratio and insertion loss are analyzed experimentally under different offset distances.The fabricated in-line interferometers are packaged under the mattress to realize contactless vital signs signals collection.By using filtering techniques,both respiration and heartbeat signals can be recovered successfully,and respiration as well as heartbeat ratio are obtained.Mode excitation and interference are theoretically analyzed in few-mode fiber while curvature sensing experiments using multi-core fiber interferometer are performed to verify its excellent performance on vital signs monitoring.The successful demonstration on contactless vital signs monitoring makes few-mode and multi-core fibers promising candidates for healthcare applications.展开更多
Millimeter waves are electromagnetic waves with wavelengths of 1–10 mm,which have characteristics of high frequency and short wavelength.They have gradually and widely been used in engineering and medical fields.We h...Millimeter waves are electromagnetic waves with wavelengths of 1–10 mm,which have characteristics of high frequency and short wavelength.They have gradually and widely been used in engineering and medical fields.We have identified studies related to millimeter waves in the biomedical field and summarized the biological effects of millimeter waves and their current status in medical applications.Finally,the shortcomings of existing studies and future developments were analyzed and discussed,with the aim of providing a reference for further research and development of millimeter waves in the medical field.展开更多
Ultrabroadband systems and ultrafast electronics require the generation,transmission,and processing of high-quality ultrashort pulses rang-ing from nanoseconds(ns)to picoseconds(ps),which include well-established and ...Ultrabroadband systems and ultrafast electronics require the generation,transmission,and processing of high-quality ultrashort pulses rang-ing from nanoseconds(ns)to picoseconds(ps),which include well-established and emerging applications of time-domain reflectometry,arbitrary wave-form generation,sampling oscilloscopes,frequency synthesis,through-wall radar imaging,indoor communication,radar surveillance,and medical radar detection.Impulse radar advancements in industrial,scientific,and medical(ISM)domains are,for example,driven by ns-scale-defined ultrawideband(UWB)technologies.Nevertheless,the generation of ultrashort ps-scale pulses is highly desired to achieve unprecedented performances in all these ap-plications and future systems.However,due to the variety and applicability of different pulse generation and compression techniques,the selection of optimum or appropriate pulse generators and compressors is difficult for practitioners and users.To this end,this article aims to provide a comprehen-sive overview of ultrashort ns and ps pulse generation and compression techniques.The proposed and developed pulse generators available in the litera-ture and on the market,which are characterized by their corresponding pros and cons,are also explored.The theoretical analysis of pulse generation us-ing a nonlinear transmission line(NLTL)presented in the literature is briefly explained as well.Additionally,a holistic overview of these pulse genera-tors from the perspective of applications is given to describe their utilization in practical systems.All of these techniques are well summarized and com-pared in terms of fundamental pulse parameters,and research gaps in specified areas are highlighted.A thorough discussion of previous research work on various topologies and techniques is presented,and potential future directions for technical advancement are examined.展开更多
The current goal is to create a set of portable terminals with GPS/BD2 dual-mode satellite positioning, vital signs monitoring and wireless transmission functions. The terminal depends on an ARM processor to collect a...The current goal is to create a set of portable terminals with GPS/BD2 dual-mode satellite positioning, vital signs monitoring and wireless transmission functions. The terminal depends on an ARM processor to collect and combine data related to vital signs and GPS/BD2 location information, and sends the message to headquarters through the military CDMA network. It integrates multiple functions as a whole. The satellite positioning and wireless transmission capabilities are integrated into the motherboard, and the vital signs sensors used in the form of belts communicate with the board through Bluetooth. It can be adjusted according to the headquarters' instructions. This kind of device is of great practical significance for operations during disaster relief, search and rescue of the wounded in wartime, non-war military operations and other special circumstances.展开更多
基金The Hong Kong Polytechnic University(1-ZVHA and 1-ZVGB)HK GRC GRF(15211317).
文摘Few-mode and multi-core fibers are proposed and demonstrated for contactless vital signs monitoring in this paper.In-line optical fiber interferometers using few-mode and multi-core fibers are designed and offset splicing is utilized for mode excitation.Extinction ratio and insertion loss are analyzed experimentally under different offset distances.The fabricated in-line interferometers are packaged under the mattress to realize contactless vital signs signals collection.By using filtering techniques,both respiration and heartbeat signals can be recovered successfully,and respiration as well as heartbeat ratio are obtained.Mode excitation and interference are theoretically analyzed in few-mode fiber while curvature sensing experiments using multi-core fiber interferometer are performed to verify its excellent performance on vital signs monitoring.The successful demonstration on contactless vital signs monitoring makes few-mode and multi-core fibers promising candidates for healthcare applications.
基金the National Natural Science Foundation of China(Grant No.81974355)Establishment of the National Intelligent Medical Clinical Research Center(Grant No.2020021105012440)Hubei Province’s New Generation of Artificial Intelligence Key Research and Development Projects(Grant No.2021BEA161).
文摘Millimeter waves are electromagnetic waves with wavelengths of 1–10 mm,which have characteristics of high frequency and short wavelength.They have gradually and widely been used in engineering and medical fields.We have identified studies related to millimeter waves in the biomedical field and summarized the biological effects of millimeter waves and their current status in medical applications.Finally,the shortcomings of existing studies and future developments were analyzed and discussed,with the aim of providing a reference for further research and development of millimeter waves in the medical field.
文摘Ultrabroadband systems and ultrafast electronics require the generation,transmission,and processing of high-quality ultrashort pulses rang-ing from nanoseconds(ns)to picoseconds(ps),which include well-established and emerging applications of time-domain reflectometry,arbitrary wave-form generation,sampling oscilloscopes,frequency synthesis,through-wall radar imaging,indoor communication,radar surveillance,and medical radar detection.Impulse radar advancements in industrial,scientific,and medical(ISM)domains are,for example,driven by ns-scale-defined ultrawideband(UWB)technologies.Nevertheless,the generation of ultrashort ps-scale pulses is highly desired to achieve unprecedented performances in all these ap-plications and future systems.However,due to the variety and applicability of different pulse generation and compression techniques,the selection of optimum or appropriate pulse generators and compressors is difficult for practitioners and users.To this end,this article aims to provide a comprehen-sive overview of ultrashort ns and ps pulse generation and compression techniques.The proposed and developed pulse generators available in the litera-ture and on the market,which are characterized by their corresponding pros and cons,are also explored.The theoretical analysis of pulse generation us-ing a nonlinear transmission line(NLTL)presented in the literature is briefly explained as well.Additionally,a holistic overview of these pulse genera-tors from the perspective of applications is given to describe their utilization in practical systems.All of these techniques are well summarized and com-pared in terms of fundamental pulse parameters,and research gaps in specified areas are highlighted.A thorough discussion of previous research work on various topologies and techniques is presented,and potential future directions for technical advancement are examined.
基金this paper has been funded from the Army Medical Research Fund of China (Grant No. 08G119)the National Natural Science Foundation of China (Grant No. 60873067)the Electronic Information Industry Development Fund (Grant No. [2006]634)
文摘The current goal is to create a set of portable terminals with GPS/BD2 dual-mode satellite positioning, vital signs monitoring and wireless transmission functions. The terminal depends on an ARM processor to collect and combine data related to vital signs and GPS/BD2 location information, and sends the message to headquarters through the military CDMA network. It integrates multiple functions as a whole. The satellite positioning and wireless transmission capabilities are integrated into the motherboard, and the vital signs sensors used in the form of belts communicate with the board through Bluetooth. It can be adjusted according to the headquarters' instructions. This kind of device is of great practical significance for operations during disaster relief, search and rescue of the wounded in wartime, non-war military operations and other special circumstances.