This paper deals with the existence of positive solutions for the problem {(Фp(x^(n-1)(t)))′+f(t,x,…,x^(n-1)=0,0〈t〈1, x^(i)(0)=0,0≤i≤n-3, x^(n-2)(0)-B0(x^(n-1)(0))=0,x^(n-2)(1)+B1...This paper deals with the existence of positive solutions for the problem {(Фp(x^(n-1)(t)))′+f(t,x,…,x^(n-1)=0,0〈t〈1, x^(i)(0)=0,0≤i≤n-3, x^(n-2)(0)-B0(x^(n-1)(0))=0,x^(n-2)(1)+B1(x^(x-1)(1))=0, where Фp(s) = |s|^p-2s, p 〉 1. f may be singular at x^(i) = 0, i = 0,...,n- 2. The proof is based on the Leray-Schauder degree and Vitali's convergence theorem.展开更多
基金the National Natural Science Foundation of China (10371006)the Foundation for PHD Specialities of Educational Department of China (20050007011).
文摘This paper deals with the existence of positive solutions for the problem {(Фp(x^(n-1)(t)))′+f(t,x,…,x^(n-1)=0,0〈t〈1, x^(i)(0)=0,0≤i≤n-3, x^(n-2)(0)-B0(x^(n-1)(0))=0,x^(n-2)(1)+B1(x^(x-1)(1))=0, where Фp(s) = |s|^p-2s, p 〉 1. f may be singular at x^(i) = 0, i = 0,...,n- 2. The proof is based on the Leray-Schauder degree and Vitali's convergence theorem.