Leaves from annual young grape plants (Vitis vinifera L. cv. Jingxiu) were used as experimental materials. The ultrastructural characteristics of mesophyll cells in chilling-treated plants after heat acclimation (H...Leaves from annual young grape plants (Vitis vinifera L. cv. Jingxiu) were used as experimental materials. The ultrastructural characteristics of mesophyll cells in chilling-treated plants after heat acclimation (HA) and in heat-treated plants after cold acclimation (CA) were observed and compared using transmission electron microscopy. The results showed that slight injury appeared in the ultrastructure of mesophyll cells after either HA (38℃ for 10 h) or CA (8℃ for 2.5 d), but the tolerance to subsequent extreme temperature stress was remarkably improved by HA or CA pretreatment. The increases in membrane permeability and malondialdehyde concentration under chilling (0℃) or heat (45℃) stress were markedly inhibited by HA or CA pretreatment. The mesophyll cells of plants not pretreated with HA were markedly damaged following chilling stress. The chloroplasts appeared irregular in shape, the arrangement of the stroma lamellae was disordered, and no starch granules were present. The cristae of the mitochondria were disrupted and became empty. The nucleus became irregular in shape and the nuclear membrane was digested. In contrast, the mesophyll cells of HA-pretreated plants maintained an intact ultrastructure under chilling stress. The mesophyll cells of control plants were also severely damaged under heat stress. The chloroplast became round in shape, the stroma lamellae became swollen, and the contents of vacuoles formed clumps. In the case of mitochondria of control plants subjected to heat stress, the outer envelope was digested and the cristae were disrupted and became many small vesicles. Compared with cellular organelles in control plants, those in CA plant cells always maintained an integrated state during whole heat stress, except for the chloroplasts, which became round in shape after 10 h heat stress. From these data, we suggest that the stability of mesophyll cells under chilling stress can be increased by HA pretreatment. Similarly, CA pretreatment can protect chloroplasts, mitochondria, and the nucleus against subsequent heat stress; thus, the thermoresistance of grape seedlings was improved. The results obtained in the present study are the first, to our knowledge, to offered cytological evidence of cross-adaptation to temperature stresses in grape plants.展开更多
[目的]初步研究UV-C照射对霞多丽葡萄果实品质形成及叶片光合生理的影响。[方法]以8年生霞多丽葡萄(Vitis vinifera L. cv Chardonnay)为试材,定期对植物进行紫外(UV-C)照射,分别采用质量法、游标卡尺测量法、分光光度计法、滴定法、光...[目的]初步研究UV-C照射对霞多丽葡萄果实品质形成及叶片光合生理的影响。[方法]以8年生霞多丽葡萄(Vitis vinifera L. cv Chardonnay)为试材,定期对植物进行紫外(UV-C)照射,分别采用质量法、游标卡尺测量法、分光光度计法、滴定法、光合仪测量法对果实的质量、纵横径、糖、酸、维生素C、叶片组织结构、叶绿素含量及相关的光合生理指标进行测量。[结果]葡萄果实生长发育的过程中,紫外线照射,没有改变果实单粒重、横径以及纵径的增长规律和可溶性总糖及有机酸的积累规律,也并未明显改变霞多丽叶片栅栏组织与海绵组织结构,但显著影响着果实的内在品质,明显促进叶绿素含量增加,光合速率增加。UV-C照射导致霞多丽果实总糖含量分别提高3.25%(花后20d)、8.27%(花后80d),有机酸含量降低34.18%(花后80d),且在果实成熟期内,Vc含量降低5.89%(花后80d),叶绿素增加23.87%,光合速率增加139.24%。[结论]UV-C照射可促进总糖含量增加,有机酸含量降低,叶绿素含量增加,导致果实的内在品质提高。展开更多
以15年生红提葡萄(Vitis Vinifera L.cv Red Globe)为试验材料,研究不同施肥方案对葡萄产量和品质的影响。结果表明,与习惯施肥对照相比,全程营养解决方案葡萄叶片厚度、质量及叶绿素含量分别提高14.0%、19.2%、20.3%,单穗重和产量分别...以15年生红提葡萄(Vitis Vinifera L.cv Red Globe)为试验材料,研究不同施肥方案对葡萄产量和品质的影响。结果表明,与习惯施肥对照相比,全程营养解决方案葡萄叶片厚度、质量及叶绿素含量分别提高14.0%、19.2%、20.3%,单穗重和产量分别提高14.0%、17.6%,可溶性固形物、维生素C和可溶性蛋白质含量分别提高12.0%、5.3%、13.1%,总酸含量下降13.6%,固酸比提高29.7%,产量和品质明显提升。展开更多
文摘Leaves from annual young grape plants (Vitis vinifera L. cv. Jingxiu) were used as experimental materials. The ultrastructural characteristics of mesophyll cells in chilling-treated plants after heat acclimation (HA) and in heat-treated plants after cold acclimation (CA) were observed and compared using transmission electron microscopy. The results showed that slight injury appeared in the ultrastructure of mesophyll cells after either HA (38℃ for 10 h) or CA (8℃ for 2.5 d), but the tolerance to subsequent extreme temperature stress was remarkably improved by HA or CA pretreatment. The increases in membrane permeability and malondialdehyde concentration under chilling (0℃) or heat (45℃) stress were markedly inhibited by HA or CA pretreatment. The mesophyll cells of plants not pretreated with HA were markedly damaged following chilling stress. The chloroplasts appeared irregular in shape, the arrangement of the stroma lamellae was disordered, and no starch granules were present. The cristae of the mitochondria were disrupted and became empty. The nucleus became irregular in shape and the nuclear membrane was digested. In contrast, the mesophyll cells of HA-pretreated plants maintained an intact ultrastructure under chilling stress. The mesophyll cells of control plants were also severely damaged under heat stress. The chloroplast became round in shape, the stroma lamellae became swollen, and the contents of vacuoles formed clumps. In the case of mitochondria of control plants subjected to heat stress, the outer envelope was digested and the cristae were disrupted and became many small vesicles. Compared with cellular organelles in control plants, those in CA plant cells always maintained an integrated state during whole heat stress, except for the chloroplasts, which became round in shape after 10 h heat stress. From these data, we suggest that the stability of mesophyll cells under chilling stress can be increased by HA pretreatment. Similarly, CA pretreatment can protect chloroplasts, mitochondria, and the nucleus against subsequent heat stress; thus, the thermoresistance of grape seedlings was improved. The results obtained in the present study are the first, to our knowledge, to offered cytological evidence of cross-adaptation to temperature stresses in grape plants.
文摘[目的]初步研究UV-C照射对霞多丽葡萄果实品质形成及叶片光合生理的影响。[方法]以8年生霞多丽葡萄(Vitis vinifera L. cv Chardonnay)为试材,定期对植物进行紫外(UV-C)照射,分别采用质量法、游标卡尺测量法、分光光度计法、滴定法、光合仪测量法对果实的质量、纵横径、糖、酸、维生素C、叶片组织结构、叶绿素含量及相关的光合生理指标进行测量。[结果]葡萄果实生长发育的过程中,紫外线照射,没有改变果实单粒重、横径以及纵径的增长规律和可溶性总糖及有机酸的积累规律,也并未明显改变霞多丽叶片栅栏组织与海绵组织结构,但显著影响着果实的内在品质,明显促进叶绿素含量增加,光合速率增加。UV-C照射导致霞多丽果实总糖含量分别提高3.25%(花后20d)、8.27%(花后80d),有机酸含量降低34.18%(花后80d),且在果实成熟期内,Vc含量降低5.89%(花后80d),叶绿素增加23.87%,光合速率增加139.24%。[结论]UV-C照射可促进总糖含量增加,有机酸含量降低,叶绿素含量增加,导致果实的内在品质提高。
文摘以15年生红提葡萄(Vitis Vinifera L.cv Red Globe)为试验材料,研究不同施肥方案对葡萄产量和品质的影响。结果表明,与习惯施肥对照相比,全程营养解决方案葡萄叶片厚度、质量及叶绿素含量分别提高14.0%、19.2%、20.3%,单穗重和产量分别提高14.0%、17.6%,可溶性固形物、维生素C和可溶性蛋白质含量分别提高12.0%、5.3%、13.1%,总酸含量下降13.6%,固酸比提高29.7%,产量和品质明显提升。