期刊文献+
共找到330篇文章
< 1 2 17 >
每页显示 20 50 100
Relationship between Voided Urine Volume and Urinary ATP in Healthy Volunteers
1
作者 Kimio Sugaya Saori Nishijima +2 位作者 Katsumi Kadekawa Katsuhiro Ashitomi Hideyuki Yamamoto 《Open Journal of Urology》 2018年第10期275-280,共6页
Purpose: We examined the relationship between the urinary ATP level and the desire to void, voided urine volume, and urinary osmotic pressure. Materials and Methods: The subjects were 4 healthy volunteers (2 men and 2... Purpose: We examined the relationship between the urinary ATP level and the desire to void, voided urine volume, and urinary osmotic pressure. Materials and Methods: The subjects were 4 healthy volunteers (2 men and 2 women) without micturition disorders who were not taking any medications and had normal urinalysis findings. Over 2 - 3 days, they urinated into a clean cup a total of 20 times. The strength of the desire to void was classified (none, slight, moderate, or strong;scored from 1 to 4, respectively) and a voiding score was assigned at each urination, along with measurement of the voided volume, urinary ATP, urinary creatinine, and urinary osmotic pressure (one man). Results: Variation of the urinary ATP/creatinine ratio was large in both male and female subjects. The urinary ATP/creatinine ratio was lower in the 2 men compared with the 2 women. This ratio showed a significant negative correlation (R2 = 0.1577 and 0.1673, both p < 0.05) with the voided urine volume in the male subjects. However, there was no relationship between the urinary ATP/creatinine ratio and the voiding score or voided urine volume in the female subjects. Conclusions: The urinary ATP level may not be a clinically useful marker of bladder pathology. Both the present study and our previous studies identified a large sex difference in the urinary ATP/creatinine ratio, and this finding may be important when considering the causes of overactive bladder (OAB) in women. The mechanism underlying the increase in urinary ATP in women should be investigated to develop new therapies for OAB. 展开更多
关键词 URINARY ATP voided URINE VOLUME SEX DIFFERENCE
下载PDF
A photogrammetric approach for quantifying the evolution of rock joint void geometry under varying contact states
2
作者 Rui Yong Changshuo Wang +1 位作者 Nick Barton Shigui Du 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期461-477,共17页
Accurate measurement of the evolution of rock joint void geometry is essential for comprehending the distribution characteristics of asperities responsible for shear and seepage behaviors.However,existing techniques o... Accurate measurement of the evolution of rock joint void geometry is essential for comprehending the distribution characteristics of asperities responsible for shear and seepage behaviors.However,existing techniques often require specialized equipment and skilled operators,posing practical challenges.In this study,a cost-effective photogrammetric approach is proposed.Particularly,local coordinate systems are established to facilitate the alignment and precise quantification of the relative position between two halves of a rock joint.Push/pull tests are conducted on rock joints with varying roughness levels to induce different contact states.A high-precision laser scanner serves as a benchmark for evaluating the photogrammetry method.Despite certain deviations exist,the measured evolution of void geometry is generally consistent with the qualitative findings of previous studies.The photogrammetric measurements yield comparable accuracy to laser scanning,with maximum errors of 13.2%for aperture and 14.4%for void volume.Most joint matching coefficient(JMC)measurement errors are below 20%.Larger measurement errors occur primarily in highly mismatched rock joints with JMC values below 0.2,but even in cases where measurement errors exceed 80%,the maximum JMC error is only 0.0434.Thus,the proposed photogrammetric approach holds promise for widespread application in void geometry measurements in rock joints. 展开更多
关键词 Rock joint Void geometry evolution PHOTOGRAMMETRY APERTURE Void volume Joint matching coefficient
下载PDF
Molecular Dynamics Simulation of Shock Response of CL-20 Co-crystals Containing Void Defects
3
作者 Changlin Li Wei Yang +5 位作者 Qiang Gan Yajun Wang Lin Liang Wenbo Zhang Shuangfei Zhu Changgen Feng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期364-374,共11页
To investigate the effect of void defects on the shock response of hexanitrohexaazaisowurtzitane(CL-20)co-crystals,shock responses of CL-20 co-crystals with energetic materials ligands trinitrotoluene(TNT),1,3-dinitro... To investigate the effect of void defects on the shock response of hexanitrohexaazaisowurtzitane(CL-20)co-crystals,shock responses of CL-20 co-crystals with energetic materials ligands trinitrotoluene(TNT),1,3-dinitrobenzene(DNB),solvents ligands dimethyl carbonate(DMC) and gamma-butyrolactone(GBL)with void were simulated,using molecular dynamics method and reactive force field.It is found that the CL-20 co-crystals with void defects will form hot spots when impacted,significantly affecting the decomposition of molecules around the void.The degree of molecular fragmentation is relatively low under the reflection velocity of 2 km/s,and the main reactions are the formation of dimer and the shedding of nitro groups.The existence of voids reduces the safety of CL-20 co-crystals,which induced the sensitivity of energetic co-crystals CL-20/TNT and CL-20/DNB to increase more significantly.Detonation has occurred under the reflection velocity of 4 km/s,energetic co-crystals are easier to polymerize than solvent co-crystals,and are not obviously affected by voids.The results show that the energy of the wave decreases after sweeping over the void,which reduces the chemical reaction frequency downstream of the void and affects the detonation performance,especially the solvent co-crystals. 展开更多
关键词 CL-20 co-crystals Molecular dynamics simulation Reactive forcefield Impact response Hot spot Void defect
下载PDF
A unified fractional flow framework for predicting the liquid holdup in two-phase pipe flows
4
作者 Fuqiao Bai Yingda Lu Mukul M.Sharma 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2614-2624,共11页
Two-phase pipe flow occurs frequently in oil&gas industry,nuclear power plants,and CCUS.Reliable calculations of gas void fraction(or liquid holdup)play a central role in two-phase pipe flow models.In this paper w... Two-phase pipe flow occurs frequently in oil&gas industry,nuclear power plants,and CCUS.Reliable calculations of gas void fraction(or liquid holdup)play a central role in two-phase pipe flow models.In this paper we apply the fractional flow theory to multiphase flow in pipes and present a unified modeling framework for predicting the fluid phase volume fractions over a broad range of pipe flow conditions.Compared to existing methods and correlations,this new framework provides a simple,approximate,and efficient way to estimate the phase volume fraction in two-phase pipe flow without invoking flow patterns.Notably,existing correlations for estimating phase volume fraction can be transformed and expressed under this modeling framework.Different fractional flow models are applicable to different flow conditions,and they demonstrate good agreement against experimental data within 5%errors when compared with an experimental database comprising of 2754 data groups from 14literature sources,covering various pipe geometries,flow patterns,fluid properties and flow inclinations.The gas void fraction predicted by the framework developed in this work can be used as inputs to reliably model the hydraulic and thermal behaviors of two-phase pipe flows. 展开更多
关键词 Pipe fractional flow Liquid holdup Multiphase pipe flow Gas void fraction
下载PDF
A Novel Model for the Prediction of Liquid Film Thickness Distribution in Pipe Gas-Liquid Flows
5
作者 Yubo Wang Yanan Yu +1 位作者 Qiming Wang Anxun Liu 《Fluid Dynamics & Materials Processing》 EI 2024年第9期1993-2006,共14页
A model is proposed for liquid film profile prediction in gas-liquid two-phase flow,which is able to provide the film thickness along the circumferential direction and the pressure gradient in the flow direction.A two... A model is proposed for liquid film profile prediction in gas-liquid two-phase flow,which is able to provide the film thickness along the circumferential direction and the pressure gradient in the flow direction.A two-fluid model is used to calculate both gas and liquid phases’flow characteristics.The secondary flow occurring in the gas phase is taken into account and a sailing boat mechanism is introduced.Moreover,energy conservation is applied for obtaining the liquid film thickness distribution along the circumference.Liquid film thickness distribution is calculated accordingly for different cases;its values are compared with other models and available experimental data.As a result,the newly proposed model is tested and good performances are demonstrated.The liquid film thickness distribution in small pipes and inclined pipes is also studied,and regime transition is revealed by liquid film profile evolution.The observed inflection point demonstrates that the liquid film thickness decreases steeply along the circumference,when the circle angle ranges between 30°and 50°for gas-liquid stratified flow with small superficial velocities. 展开更多
关键词 Film thickness secondary flow void fraction pressure gradient regime transition
下载PDF
A Novel Method for Determining the Void Fraction in Gas-Liquid Multi-Phase Systems Using a Dynamic Conductivity Probe
6
作者 Xiaochu Luo Xiaobing Qi +3 位作者 Zhao Luo Zhonghao Li Ruiquan Liao Xingkai Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1233-1249,共17页
Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity.This study presents a novel... Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity.This study presents a novel approach for determining the void fraction based on a reciprocating dynamic conductivity probe used to measure the liquid film thickness under forced annular-flow conditions.The measurement system comprises a cyclone,a conductivity probe,a probe reciprocating device,and a data acquisition and processing system.This method ensures that the flow pattern is adjusted to a forced annular flow,thereby minimizing the influence of complex and variable gas-liquid flow patterns on the measurement results;Moreover,it determines the liquid film thickness solely according to circuit connectivity rather than specific conductivity values,thereby mitigating the impact of salinity.The reliability of the measurement system is demonstrated through laboratory experiments.The experimental results indicate that,in a range of gas phase superficial velocities 5–20 m/s and liquid phase superficial velocities 0.079–0.48 m/s,the maximum measurement deviation for the void fraction is 4.23%. 展开更多
关键词 Forced annular flow dynamic conductivity probe void fraction gas-liquid flow liquid film thickness
下载PDF
Mechanism of cross-level settlements and void accumulation of wide and conventional sleepers in railway ballast
7
作者 Olga Nabochenko Mykola Sysyn +1 位作者 Norman Krumnow Szabolcs Fischer 《Railway Engineering Science》 EI 2024年第3期361-383,共23页
The cross-level and twist irregularities are the most dangerous irregularity types that could cause wheel unloading with the risk of derailments and additional maintenance expenses.However,the mechanism of the irregul... The cross-level and twist irregularities are the most dangerous irregularity types that could cause wheel unloading with the risk of derailments and additional maintenance expenses.However,the mechanism of the irregularities initiation and development is unclear.The motivation of the present study was the previous experimental studies on the application of wide sleepers in the ballasted track.The long-term track geometry measurements with wide sleepers show an enormous reduction of the vertical longitudinal irregularities compared to the conventional track.However,wide sleepers had higher twist and cross-section level irregularities.The present paper aims to explain the phenomenon by discrete element method(DEM)modeling the development process of sleeper inhomogeneous support at cross-level depending on the sleeper form.The DEM simulations show that the maximal settlement intensity is up to 3.5 times lower for a wide sleeper in comparison with the conventional one.Nevertheless,the cross-level differential settlements are almost the same for both sleepers.The particle loading distribution after all loading cycles is concentrated on the smaller area,up to the half sleeper length,with fully unloaded zones under sleeper ends.Ballast flow limitation under the central part of the sleeper could improve the resilience of wide sleepers to the development of cross-level irregularities.The mechanism of initiation of the cross-level irregularity is proposed,which assumes the loss of sleeper support under sleeper ends.The further growth of inhomogeneous settlements along the sleeper is assumed as a result of the interaction of two processes:ballast flow due to dynamic impact during void closing and on the other side high pressure due to the concentration of the pressure under the middle part of the sleeper.The DEM simulation results support the assumption of the mechanism and agree with the experimental studies. 展开更多
关键词 Wide sleeper Ballasted track Sleeper support inhomogeneity Sleeper foot form Discrete element modeling Void accumulation
下载PDF
Effect of perforation density distribution on production of perforated horizontal wellbore
8
作者 KAREEM Hasanain J. HASINI Hasril ABDULWAHID Mohammed A. 《Petroleum Exploration and Development》 SCIE 2024年第2期464-475,共12页
To address the issue of horizontal well production affected by the distribution of perforation density in the wellbore,a numerical model for simulating two-phase flow in a horizontal well is established under two perf... To address the issue of horizontal well production affected by the distribution of perforation density in the wellbore,a numerical model for simulating two-phase flow in a horizontal well is established under two perforation density distribution conditions(i.e.increasing the perforation density at inlet and outlet sections respectively).The simulation results are compared with experimental results to verify the reliability of the numerical simulation method.The behaviors of the total pressure drop,superficial velocity of air-water two-phase flow,void fraction,liquid film thickness,air production and liquid production that occur with various flow patterns are investigated under two perforation density distribution conditions based on the numerical model.The total pressure drop,superficial velocity of the mixture and void fraction increase with the air flow rate when the water flow rate is constant.The liquid film thickness decreases when the air flow rate increases.The liquid and air productions increase when the perforation density increases at the inlet section compared with increasing the perforation density at the outlet section of the perforated horizontal wellbore.It is noted that the air production increases with the air flow rate.Liquid production increases with the bubble flow and begins to decrease at the transition point of the slug-stratified flow,then increases through the stratified wave flow.The normalized liquid flux is higher when the perforation density increases at the inlet section,and increases with the radial air flow rate. 展开更多
关键词 horizontal wellbore two-phase flow pattern perforation density wellbore pressure drop void fraction production performance
下载PDF
Erosion Wear Behaviour of Kenaf/Glass Hybrid Polymer Composites
9
作者 Chandrakanta Mishra Deepak Kumar Mohapatra +2 位作者 Chitta Ranjan Deo Punyapriya Mishra Kiran Kumar Ekka 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第1期78-89,共12页
The awareness amongst the researchers to develop an environment friendly sustainable material leads to explore new class of plant-based fiber for making composites. Hybridization of such plant-based fiber with inclusi... The awareness amongst the researchers to develop an environment friendly sustainable material leads to explore new class of plant-based fiber for making composites. Hybridization of such plant-based fiber with inclusion of engineered fiber is one of the promising methods to not only enhanced the mechanical performance but also suppressed the drawbacks that associate with such plant-based fiber to some extent. A usual hand lay-up method was taken-up in this work to fabricate four layered of hybrid kenaf(K)/glass(G)polyester laminates with different stacking order such as KKKK,KGKG,KGGK,GKKG and GGGG. The erosive character of the laminates was examined under three distinct particle velocities(48m/s, 70m/s,82m/s)and four different impact angles(30°, 45°, 60°, 90°). All fabricated laminates exhibited a semiductile character at lower velocities(48m/s and70m/s)as peak wear rate was observed at45° impact angle. However,they showed a semi-brittle character at high velocity(82m/s)as maximum rate of erosion was noticed at60° impact angle. Again,the influence of stacking order of piles on erosion wear was also clearly noticed. Moreover,the semi-brittle/semi-ductile characterization was also evidenced in accordance to the range of erosion efficiencies. The micro-structures of worn surfaces were inspected thoroughly from the images of scanning electron microscope(SEM)to evident the mechanism of erosion. 展开更多
关键词 hybrid composites erosion wear VOID micro⁃hardness
下载PDF
Erosive Wear Study of PPLSF/Glass Fiber Reinforced Hybrid Laminates
10
作者 Chetana Tripathy Deepak Kumar Mohapatra +1 位作者 Chitta Ranjan Deo Punyapriya Mishra 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第2期68-79,共12页
This work is focused to examine the erosive performance of hybrid Palmyra palm leaf stalk fiber(PPLSF)/glass polyester laminate against solid particle bombardment.A hand lay-up method was adopted for the fabricating f... This work is focused to examine the erosive performance of hybrid Palmyra palm leaf stalk fiber(PPLSF)/glass polyester laminate against solid particle bombardment.A hand lay-up method was adopted for the fabricating four piles of five distinct laminates with different stacking order glass and PPLSF layers.Amongst them,one group of pure PPLSF and pure E-glass laminates were fabricated.The hybrid laminates were exposed to high speed stream of solid sand particle at three distinct impact velocities(48,70 and 82 m/s)and four different angles of impingement(30°,45°,60°and 90°).The effect of particle velocity,angle of impingement and stacking order on both wear rate and efficiency were highlighted.The experimental assessment reveals a significant improvement in erosive wear resistance properties due to hybridization of PPLSF with E-glass.Again,the laminates with PPLSF layer as skin and glass as core layer exhibited better erosive wear resistance properties than other types of laminates.Further,a maximum value of erosion at lower velocity(48 m/s)is also noticed at 45°impingement angle.However,at high velocity of impact 70 m/s and 82 m/s,the maximum rate of erosion has been shifted from 45°impact angle to 60°impact angle.The alternation of this semi-ductile character to semi-brittle character is evidenced by analyzing the experimental data.Further to justify the mode of erosion,the eroded surface samples were inspected by scanning electron microscope(SEM). 展开更多
关键词 hybrid composites erosion wear VOID micro-hardness SEM
下载PDF
Non-Uniform Pion Tetrahedron Aether and Electron Tetrahedron Model
11
作者 Rami Rom 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第2期810-824,共15页
We propose that the QCD vacuum pion tetrahedron condensate density vary in space and drops to extremely low values in the Kennan, Barger and Cowie (KBC) void in analogy to earth’s atmospheric density drop with elevat... We propose that the QCD vacuum pion tetrahedron condensate density vary in space and drops to extremely low values in the Kennan, Barger and Cowie (KBC) void in analogy to earth’s atmospheric density drop with elevation from earth. We propose a formula for the gravitation acceleration based on the non-uniform pion tetrahedron condensate. Gravity may be due to the underlying microscopic attraction between quarks and antiquarks, which are part of the vacuum pion tetrahedron condensate. We propose an electron tetrahedron model, where electrons are comprised of tetraquark tetrahedrons, and . The quarks determine the negative electron charge and the or quarks determine the electron two spin states. The electron tetrahedron may perform a high frequency quark exchange reactions with the pion tetrahedron condensate by tunneling through the condensation gap creating a delocalized electron cloud with a fixed spin. The pion tetrahedron may act as a QCD glue bonding electron pairs in atoms and molecules and protons to neutrons in the nuclei. Conservation of valence quarks and antiquarks is proposed. 展开更多
关键词 Standard Model (SM) QCD Vacuum Condensate Electric Dipole Moment (EDM) KBC Void ANTIMATTER MOND Theory Aether
下载PDF
Cosmic Bubbles
12
作者 Vladimir S. Netchitailo 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期438-453,共16页
The present paper is inspired by the article “Ho’oleilana: An Individual Baryon Acoustic Oscillation?” published by R. B. Tully, C. Howlett, and D. Pomarède on Sep. 2023 [1]. They claim: Evidence is presented ... The present paper is inspired by the article “Ho’oleilana: An Individual Baryon Acoustic Oscillation?” published by R. B. Tully, C. Howlett, and D. Pomarède on Sep. 2023 [1]. They claim: Evidence is presented here for the discovery of a remarkably strong individual contribution to the baryon acoustic oscillation (BAO) signal at z = 0.068, an entity that is given the name Ho’oleilana. K. Dawson, co-spokesperson for Dark Energy Spectroscopic Instrument is more inclined to believe that this latest finding is something of a coincidence, a chance alignment that simply looks like a sphere with a radius around what you’d expect for a BAO [2]. In this paper, we provide a short summary of experimental observations of Boötes Void and Superclusters;discuss the main features of the developed Hypersphere World-Universe Model;introduce notions “Cosmic Voids” and “Cosmic Bubbles”;elaborate a mathematical framework for different types of Cosmic Bubbles (Hubble Spherical Bubble for the World, Disk Bubbles for Galaxies;Spherical Bubbles for Extrasolar Systems, Dark Matter (DM) Spherical Bubbles for Galaxies and Superclusters);make a conclusion that the Boötes is a DM Cosmic Bubble and suggest experiments, which confirm our conclusion. 展开更多
关键词 World-Universe Model Boötes Void Boötes Superclusters Macroobjects Bubbles Dark Matter Bubbles Fermi Bubbles Boötes Bubbles
下载PDF
HARP-SiCoNi工艺在量产环境下提升高台阶比浅沟道隔离填充能力的研究
13
作者 倪立华 丁亚钦 李宗旭 《集成电路应用》 2024年第4期52-54,共3页
阐述基于量产环境中“高台阶比”的“非标准V型”STI结构,使用传统的HARP和SiCoNi组合工艺研究该结构Void Free的填充方案,并测试HARP预沉积厚度和SiCoNi刻蚀量的工艺窗口,实现量产环境下“高台阶比”的“非标准V型”沟槽Void Free填充。
关键词 集成电路制造 STI填充 HARP SiCoNi VOID
下载PDF
Assessment of a two-surface plasticity model for hexagonal materials 被引量:1
14
作者 R.Vigneshwaran A.A.Benzerga 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4431-4444,共14页
A computationally efficient two-surface plasticity model is assessed against crystal plasticity. Focus is laid on the mechanical behavior of magnesium alloys in the presence of ductility-limiting defects, such as void... A computationally efficient two-surface plasticity model is assessed against crystal plasticity. Focus is laid on the mechanical behavior of magnesium alloys in the presence of ductility-limiting defects, such as voids. The two surfaces separately account for slip and twinning such that the constitutive formulation captures the evolving plastic anisotropy and evolving tension-compression asymmetry. For model identification, a procedure is proposed whereby the initial guess is based on a combination of experimental data and computationally intensive polycrystal calculations from the literature. In drawing direct comparisons with crystal plasticity, of which the proposed model constitutes a heuristically derived reduced-order model, the available crystal plasticity simulations are grouped in two datasets. A calibration set contains minimal data for both pristine and porous material subjected to one loading path. Then the two-surface model is assessed against a broader set of crystal plasticity simulations for voided unit cells under various stress states and two loading orientations. The assessment also includes microstructure evolution(rate of growth of porosity and void distortion). The ability of the two-surface model to capture essential features of crystal plasticity is analyzed along with an evaluation of computational cost. The prospects of using the model in guiding the development of physically sound damage models in Mg alloys are put forth in the context of high-throughput simulations. 展开更多
关键词 HCP metals Plastic anisotropy Reduced order model Void growth Void coalescence
下载PDF
Characterizations of gas-liquid interface distribution and slug evolution in a vertical pipe 被引量:1
15
作者 Hai-Yang Yu Qiang Xu +3 位作者 Ye-Qi Cao Bo Huang Han-Xuan Wang Lie-Jin Guo 《Petroleum Science》 SCIE EI CSCD 2023年第5期3157-3171,共15页
Large vertical pipes are key structures connecting subsea wells to offshore platforms.However,existing studies mainly focus on small vertical pipes.In a vertical acrylic pipe with 80 mm inner diameter and 11 m height,... Large vertical pipes are key structures connecting subsea wells to offshore platforms.However,existing studies mainly focus on small vertical pipes.In a vertical acrylic pipe with 80 mm inner diameter and 11 m height,a high-speed camera was used to visually research the influences of pipe diameters,liquid properties and inlet effect on air-water co-flow characteristic.Different flow regime maps of vertical pipes(diameters are in the range of 50e189 mm)were compared and the critical gas velocity of the transition boundary from bubble to slug flow tended to increase with the increase of diameters at D≥80 mm.Drift-flux models were established in different flow regimes and liquid properties have a significant effect on drift coefficients of bubble flow and slug flow(void fraction a≤0.4).The influence of inlet turbulent effect on the gas-liquid interface distribution gradually weakened and disappeared from the pipe base to 85D,where the flow was fully developed.Slug frequency has a trend of increase first and then decrease with the gas Weber numbers increasing at low liquid superficial velocities(J_(L)≤0.31 m/s).And on the basis of this law,a new slug frequency correlation was proposed.It was found that there was an exponential relationship between the ratio of lengths of Taylor bubble to slug and the void fraction. 展开更多
关键词 Void fraction Flow regime Drift coefficien Slug frequency Taylor bubble length
下载PDF
Distribution Properties of Internal Air Voids in Ultrathin Asphalt Friction Course
16
作者 林宏伟 杜晓博 +4 位作者 ZHONG Changyu WU Ping LIU Wenchang SUN Mutian ZHANG Hongchao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期538-546,共9页
The distribution characteristics of air voids in ultrathin asphalt friction course(UAFC) samples with different gradations and compaction methods were statistically analyzed using X-ray computed tomography(CT) and ima... The distribution characteristics of air voids in ultrathin asphalt friction course(UAFC) samples with different gradations and compaction methods were statistically analyzed using X-ray computed tomography(CT) and image analysis techniques. Based on the results, compared with the AC-5 sample, the OGFC-5mixture has a higher air void ratio, a larger air void size and a greater number of air voids, with the distribution of internal air voids being more uniform and their shapes being more rounded. The two-parameter Weibull function was applied to fit the gradation of air voids. The fitting results is good, and the function parameters are sensitive to changes in both mineral gradation and compaction method. Moreover, two homogeneity indices were proposed to evaluate the compaction uniformity of UAFC samples. Compared with the Marshall method,the SGC method is more conducive to improve the compaction uniformity of UAFC samples. The compaction method significantly influences the air void distribution characteristics and compaction uniformity of AC-5sample, but has a less significant impact on OGFC-5 sample. The experimental results in the study provides a solid foundation for further explorations on the internal structure and mixture design of UAFC. 展开更多
关键词 ultrathin asphalt friction course air void characterization air void gradation homogeneity evaluation X-ray CT
下载PDF
Automated X-ray Defect Inspection on Occluded BGA Balls Using Hybrid Algorithm
17
作者 Ki-Yeol Eom Byungseok Min 《Computers, Materials & Continua》 SCIE EI 2023年第6期6337-6350,共14页
Automated X-ray defect inspection of occluded objects has been an essential topic in semiconductors,autonomous vehicles,and artificial intelligence devices.However,there are few solutions to segment occluded objects i... Automated X-ray defect inspection of occluded objects has been an essential topic in semiconductors,autonomous vehicles,and artificial intelligence devices.However,there are few solutions to segment occluded objects in the X-ray inspection efficiently.In particular,in the Ball Grid Array inspection of X-ray images,it is difficult to accurately segment the regions of occluded solder balls and detect defects inside solder balls.In this paper,we present a novel automatic inspection algorithm that segments solder balls,and detects defects fast and efficiently when solder balls are occluded.The proposed algorithm consists of two stages.In the first stage,the defective candidates or defects are determined through the following four steps:(i)image preprocessing such as noise removal,contrast enhancement,binarization,connected component,and morphology,(ii)limiting the inspec-tion area to the ball regions and determining if the ball regions are occluded,(iii)segmenting each ball region into one or more regions with similar gray values,and(iv)determining whether there are defects or defective candidates in the regions using a weighted sum of local threshold on local variance.If there are defective candidates,the determination of defects is finally made in the following stage.In the second stage,defects are detected using the automated inspection technique based on oblique computed tomography.The 3D precision inspection process is divided into four steps:(i)obtaining 360 projection images(one image per degree)rotating the object from 0 to 360 degrees,(ii)reconstructing a 3D image from the 360 projected images,(iii)finding the center slice of gravity for solder balls from the axial slice images in the z-direction,and getting the inspection intervals between the upper bound and the lower bound from the center slice,and(iv)finally determining whether there are defects in the averaged image of solder balls.The proposed hybrid algorithm is robust for segmenting the defects inside occluded solder balls,and improves the performance of solder ball segmentation and defect detection algorithm.Experimental results show an accuracy of more than 97%. 展开更多
关键词 HYBRID voids BGA X-ray inspection DEFECTS
下载PDF
Factors Influencing the Thermal Conductivity of Silt in the Yellow River Delta
18
作者 YANG Xiuqing DENG Shenggui +2 位作者 GUO Lei ZHANG Yan LIU Tao 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第4期1003-1011,共9页
The thermal conductivity of marine sediments is an important thermophysical parameter in the study of seafloor heat flow and marine engineering construction.Understanding the effect of thermal conductivity of marine s... The thermal conductivity of marine sediments is an important thermophysical parameter in the study of seafloor heat flow and marine engineering construction.Understanding the effect of thermal conductivity of marine sediments in the environment has a major engineering value and theoretical significance.In this work,a modified test method was used to measure the thermal conductivity of silt in the Yellow River Delta under different void ratios,moisture contents,temperatures,and salinities.Results showed that the thermal conductivity of silt in the Yellow River Delta decreased with the increase in the void ratio and increased with the water content.Compared with sand and clay,silt in the Yellow River Delta was the least affected by the void ratio and moisture content.Under low temperatures,the heat transfer of soil was controlled by the average velocity of the phonons;therefore,the thermal conductivity of silt in the Yellow River Estuary increased with temperature.The thermal conductivity of pore water decreased with increasing salinity.Moreover,certain salinity levels resulted in a phenomenon known as the‘compressing twin electrical layer’,which led to an increase in the contact area between soil particles.With the increase in salinity,the thermal conductivity of silt in the Yellow River Delta experiences an initial decline and a subsequent increase.The proposed thermal conductivity test method is more accurate than the existing technique,and the findings provide a basis for further study on the thermal characteristics of submarine sediments. 展开更多
关键词 silt in the Yellow River Delta thermal conductivity void ratio water content TEMPERATURE SALINITY
下载PDF
A national survey of lower urinary tract symptoms in Jordan
19
作者 Fadi Sawaqed Ibrahim Kharboush +3 位作者 Mohammed Suoub Ismail Albadawi Mohmmad Alhawatmeh Abdallah Murad 《Asian Journal of Urology》 CSCD 2023年第4期518-525,共8页
Objective To determine the prevalence of lower urinary tract symptoms(LUTS)and their severity population in Jordan.Methods This cross-sectional survey was conducted using a paper-based survey between August and Septem... Objective To determine the prevalence of lower urinary tract symptoms(LUTS)and their severity population in Jordan.Methods This cross-sectional survey was conducted using a paper-based survey between August and September in 2019.The study was carried out in the health care centers or hospitals in three different regions of Jordan:North(Irbid and Jarash),Middle(Amman,Madaba,Salt,and Zarqa),and South(Karak and Aqaba).Results To estimate the prevalence of LUTS,two definitions were used,including the first definition(presence of any LUTS regardless of the degree of severity)and the second definition(presence of any LUTS that occurs half the time or more).According to the first definition,1038(89.9%)reported LUTS(male:47.3%,female:52.7%),while 763(66.1%)reported LUTS according to the second definition(male:45.6%,female:54.4%).According to the International Prostate Symptom Score characterization,73.9%had nocturia and 62.9%reported daytime increased frequency.Conclusion LUTS are highly prevalent among the Jordanian population,and more than half of them have nocturia or daytime increased frequency as most frequently reported symptoms. 展开更多
关键词 Lower urinary tract symptom VOIDING URGENCY NOCTURIA INCONTINENCE
下载PDF
Application of Physics for Understanding the Earth’s Reverse Gravity
20
作者 Subhasis Sen 《Journal of Geoscience and Environment Protection》 2023年第1期119-126,共8页
The prevalent view endorses that the force of gravitation of the earth is directed towards the centre of the planet, in consequence of which, temperature and pressure at the deepest part of the planet must be very hig... The prevalent view endorses that the force of gravitation of the earth is directed towards the centre of the planet, in consequence of which, temperature and pressure at the deepest part of the planet must be very high. This view leads to the conclusion that the inner core or deepest part of the planet, though constituted of iron through which magnetic lines of force emanate, cannot be magnetic. The author has shown that amongst the earth’s three geospheres, fluid outer core that occurs between mantle and inner core, is a void zone which, because of the association of some particles from the mantle, apparently shows fluid characteristics. Occurrence of a virtually void zone in the planet’s deep interior separated by a solid mantle and iron inner core would generate a reversely directed gravitational force due to which pressure and temperature at the deepest part of the earth would be sufficiently low. Hence, the earth’s solid inner core, constituted of iron, is a dipolar permanent magnet. The paper envisages that the concept of reverse gravity presented here needs to be validated by physicists since it is an original view. The concept put forward here, not only explains the cause of earth’s magnetic phenomena, but also elucidates continental drifting and several other features of the planet in a scientifically accepted manner, thereby refuting the possibility of occurrence of convection current in the mantle which is solid and rigid. 展开更多
关键词 GRAVITATION MANTLE Inner Core Reverse Gravity Void Zone Dipolar Permanent Magnet METEORITE
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部