Volatile organic compounds (VOCs) are an atmospheric pollutant with a boiling point of 50˚C - 260˚C at room temperature and pressure. They are precursors of sulfur dioxide and ozone, which can seriously pollute the at...Volatile organic compounds (VOCs) are an atmospheric pollutant with a boiling point of 50˚C - 260˚C at room temperature and pressure. They are precursors of sulfur dioxide and ozone, which can seriously pollute the atmosphere and endanger human health. After the “14th Five-Year Plan”, VOCs, instead of SO2, became one of the five indicators of China’s atmospheric governance. As a result, the government’s efforts to control VOCs have increased significantly. VOCs governance mustn’t be delayed. This paper provides a comprehensive summary and analysis of VOCs governance, covering the classification of VOCs, analysis of VOC governance technology (with a focus on end-of-pipe governance technology), national policy regulations, current governance shortcomings, and a forward-looking perspective on the future direction of VOCs governance, emphasizing healthy and sustainable development.展开更多
Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific micr...Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity.展开更多
BACKGROUND Volatile organic compounds(VOCs)are a promising potential biomarker that may be able to identify the presence of cancers.AIM To identify exhaled breath VOCs that distinguish pancreatic ductal adenocar-cinom...BACKGROUND Volatile organic compounds(VOCs)are a promising potential biomarker that may be able to identify the presence of cancers.AIM To identify exhaled breath VOCs that distinguish pancreatic ductal adenocar-cinoma(PDAC)from intraductal papillary mucinous neoplasm(IPMN)and healthy volunteers.METHODS We collected exhaled breath from histologically proven PDAC patients,radiological diagnosis IPMN,and healthy volunteers using the ReCIVA®device between 10/2021-11/2022.VOCs were identified by thermal desorption-gas chromatography/field-asymmetric ion mobility spectrometry and compared between groups.RESULTS A total of 156 participants(44%male,mean age 62.6±10.6)were enrolled(54 PDAC,42 IPMN,and 60 controls).Among the nine VOCs identified,two VOCs that showed differences between groups were dimethyl sulfide[0.73 vs 0.74 vs 0.94 arbitrary units(AU),respectively;P=0.008]and acetone dimers(3.95 vs 4.49 vs 5.19 AU,respectively;P<0.001).After adjusting for the imbalance parameters,PDAC showed higher dimethyl sulfide levels than the control and IPMN groups,with adjusted odds ratio(aOR)of 6.98(95%CI:1.15-42.17)and 4.56(1.03-20.20),respectively(P<0.05 both).Acetone dimer levels were also higher in PDAC compared to controls and IPMN(aOR:5.12(1.80-14.57)and aOR:3.35(1.47-7.63),respectively(P<0.05 both).Acetone dimer,but not dimethyl sulfide,performed better than CA19-9 in PDAC diagnosis(AUROC 0.910 vs 0.796).The AUROC of acetone dimer increased to 0.936 when combined with CA19-9,which was better than CA19-9 alone(P<0.05).CONCLUSION Dimethyl sulfide and acetone dimer are VOCs that potentially distinguish PDAC from IPMN and healthy participants.Additional prospective studies are required to validate these findings.展开更多
Recently, researchers in the road field are focusing on the development of green asphalt materials with loweremission of volatile organic compounds (VOCs). The characterization methodology of asphalt VOCs and theinflu...Recently, researchers in the road field are focusing on the development of green asphalt materials with loweremission of volatile organic compounds (VOCs). The characterization methodology of asphalt VOCs and theinfluencing factors on VOCs release have always been the basic issue of asphalt VOCs emission reduction research.Researchers have proposed a variety of asphalt VOCs characterization methodologies, which also have mutuallyirreplaceable characteristics. Asphalt VOCs volatilization is affected by many factors. In this study, asphalt VOCscharacterization methodologies were summarized, including their advantages, disadvantages, characteristics andapplicable requirements. Subsequently, the influencing factors of VOCs release, such as asphalt types and environment conditions, are summarized to provide theoretical support for the emission reduction research. Theclassification and mechanism of newly-development asphalt VOCs emission reduction materials are reviewed. Thereduction efficiencies are also compared to select better materials and put forward the improvement objective ofnew materials and new processes. In addition, the prospects about development of VOCs release mechanism ofasphalt materials during the full life cycle and feasibility research of high-efficiency composite emission reductionmaterials in the future were put forward.展开更多
This paper presents a comprehensive overview of various advanced technologies employed in the treatment of volatile organic compounds(VOCs),which are crucial pollutants in industrial emissions.The study explores diffe...This paper presents a comprehensive overview of various advanced technologies employed in the treatment of volatile organic compounds(VOCs),which are crucial pollutants in industrial emissions.The study explores different methods,including direct combustion,thermal combustion,catalytic combustion,low-temperature plasma purification,photocatalytic purification,membrane separation,and adsorption methods.Each technology is critically analyzed for its operational principles,efficiency,and applicability under different conditions.Special attention is given to adsorption concentration and catalytic combustion parallel method,highlighting its efficiency in treating low-concentration,high-volume VOC emissions.The paper also delves into the advantages and limitations of each method,providing insights into their effectiveness in various industrial scenarios.The study aims to offer a detailed guide for selecting appropriate VOC treatment technologies,contributing to enhanced environmental protection and sustainable industrial practices.展开更多
The asthmatic inflammatory process results in the generation of volatile organic compounds(VOCs),which are subsequently secreted by the airways.The study of these elements through gas chromatography-mass spectrometry(...The asthmatic inflammatory process results in the generation of volatile organic compounds(VOCs),which are subsequently secreted by the airways.The study of these elements through gas chromatography-mass spectrometry(GC-MS),which can identify individual molecules with a discriminatory capacity of over 85%,and electronic-Nose(e-NOSE),which is able to perform a quick onboard pattern-recognition analysis of VOCs,has allowed new prospects for non-invasive analysis of the disease in an"omics"approach.In this review,we aim to collect and compare the progress made in VOCs analysis using the two methods and their instrumental characteristics.Studies have described the potential of GC-MS and e-NOSE in a multitude of relevant aspects of the disease in both children and adults,as well as differential diagnosis between asthma and other conditions such as wheezing,cystic fibrosis,COPD,allergic rhinitis and last but not least,the accuracy of these methods compared to other diagnostic tools such as lung function,FeNO and eosinophil count.Due to significant limitations of both methods,it is still necessary to improve and standardize techniques.Currently,e-NOSE appears to be the most promising aid in clinical practice,whereas GC-MS,as the gold standard for the structural analysis of molecules,remains an essential tool in terms of research for further studies on the pathophysiologic pathways of the asthmatic inflammatory process.In conclusion,the study of VOCs through GC-MS and e-NOSE appears to hold promise for the noninvasive diagnosis,assessment,and monitoring of asthma,as well as for further research studies on the disease.展开更多
In this study,we investigated the abatement of volatile organic compounds(VOCs)by the atmospheric pressure microwave plasma torch(AMPT).To study the treatment efficiency of AMPT,we used the toluene and water-based var...In this study,we investigated the abatement of volatile organic compounds(VOCs)by the atmospheric pressure microwave plasma torch(AMPT).To study the treatment efficiency of AMPT,we used the toluene and water-based varnish to simulate VOCs,respectively.By measuring the compounds and contents of the mixture gas before/after the microwave plasma process,we have calculated the treatment efficiency of AMPT.The experimental results show that the treatment efficiency of AMPT for toluene with a concentration of 17.32×10^(4) ppm is up to 60 g/kWh with the removal rate of 86%.For the volatile compounds of water-based varnish,the removal efficiency is up to 97.99%.We have demonstrated the higher potential for VOCs removal of the AMPT process.展开更多
Membrane separation, a new technology for removing VOCs including pervaporation, vapor permeation, membrane contactor, and membrane bioreactor was presented. Comparing with traditional techniques, these special techni...Membrane separation, a new technology for removing VOCs including pervaporation, vapor permeation, membrane contactor, and membrane bioreactor was presented. Comparing with traditional techniques, these special techniques are an efficient and energy saving technology. Vapor permeation can be applied to recovery of organic solvents from exhaust streams. Membrane contactor could be used for removing or recovering VOCs from air or wastewater. Pervaporation and vapor permeation are viable methods for removing VOCs from wastewater to yield a VOC concentrate which could either be destroyed by conventional means, or be recycled for reuse.展开更多
Biogenic volatile organic compounds(BVOCs)have positive impact on environmental ecology and human physical and mental health.In this paper,the collection methods and components analysis,dynamic release mechanism,ecolo...Biogenic volatile organic compounds(BVOCs)have positive impact on environmental ecology and human physical and mental health.In this paper,the collection methods and components analysis,dynamic release mechanism,ecological function and the impact on human health of BVOCs were summarized.The purpose of this paper is to provide reference and suggestions for further study on the infl uence mechanism of BVOCs on human health,and to provide a theoretical basis for its application in landscape environment.展开更多
Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use...Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use of activated carbons as adsorbents and oxide-supported metals as catalysts. Notably, activated carbons easily adsorb water, which strongly hinders the adsorption of VOCs; conventional oxides typically possess relatively low surface areas and random pores, which effectively influence the catalytic conversion of VOCs. Zeolites, in contrast with activated carbons and oxides, can be designed to have very uniform and controllable micropores, in addition to tailored wettability properties, which can favor the selective adsorption of VOCs. In particular, zeolites with selective adsorptive properties when combined with catalytically active metals result in zeolite-supported metals exhibiting significantly improved performance in the catalytic combustion of VOCs compared with conventional oxide-supported catalysts. In this review, recent developments on VOC abatement by adsorptive and catalytic techniques over zeolite-based materials have been briefly summarized.展开更多
Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalys...Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalysts. Many catalysts including transition metal oxides, mixed metal oxides, and sup‐ported noble metals have been developed. Among these catalysts, the porous ones attract much attention. In this review, we focus on recent advances in the synthesis of ordered mesoporous and macroporous transition metal oxides, perovskites, and supported noble metal catalysts and their catalytic oxidation of VOCs. The porous catalysts outperformed their bulk counterparts. This excel‐lent catalytic performance was due to their high surface areas, high concentration of adsorbed oxy‐gen species, low temperature reducibility, strong interaction between noble metal and support and highly dispersed noble metal nanoparticles and unique porous structures. Catalytic oxidation of carbon monoxide over typical catalysts was also discussed. We made conclusive remarks and pro‐posed future work for the removal of VOCs.展开更多
文摘Volatile organic compounds (VOCs) are an atmospheric pollutant with a boiling point of 50˚C - 260˚C at room temperature and pressure. They are precursors of sulfur dioxide and ozone, which can seriously pollute the atmosphere and endanger human health. After the “14th Five-Year Plan”, VOCs, instead of SO2, became one of the five indicators of China’s atmospheric governance. As a result, the government’s efforts to control VOCs have increased significantly. VOCs governance mustn’t be delayed. This paper provides a comprehensive summary and analysis of VOCs governance, covering the classification of VOCs, analysis of VOC governance technology (with a focus on end-of-pipe governance technology), national policy regulations, current governance shortcomings, and a forward-looking perspective on the future direction of VOCs governance, emphasizing healthy and sustainable development.
基金funded by the National Science Centre,Poland(Project No.:2017/26/D/NZ6/00136).
文摘Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity.
基金The study protocol was reviewed and approved by the Institutional Research Committee,Faculty of Medicine,Chulalongkorn University(No.0482/65)registered in the Thai Clinical Trials Registry(TCTR20211109002).
文摘BACKGROUND Volatile organic compounds(VOCs)are a promising potential biomarker that may be able to identify the presence of cancers.AIM To identify exhaled breath VOCs that distinguish pancreatic ductal adenocar-cinoma(PDAC)from intraductal papillary mucinous neoplasm(IPMN)and healthy volunteers.METHODS We collected exhaled breath from histologically proven PDAC patients,radiological diagnosis IPMN,and healthy volunteers using the ReCIVA®device between 10/2021-11/2022.VOCs were identified by thermal desorption-gas chromatography/field-asymmetric ion mobility spectrometry and compared between groups.RESULTS A total of 156 participants(44%male,mean age 62.6±10.6)were enrolled(54 PDAC,42 IPMN,and 60 controls).Among the nine VOCs identified,two VOCs that showed differences between groups were dimethyl sulfide[0.73 vs 0.74 vs 0.94 arbitrary units(AU),respectively;P=0.008]and acetone dimers(3.95 vs 4.49 vs 5.19 AU,respectively;P<0.001).After adjusting for the imbalance parameters,PDAC showed higher dimethyl sulfide levels than the control and IPMN groups,with adjusted odds ratio(aOR)of 6.98(95%CI:1.15-42.17)and 4.56(1.03-20.20),respectively(P<0.05 both).Acetone dimer levels were also higher in PDAC compared to controls and IPMN(aOR:5.12(1.80-14.57)and aOR:3.35(1.47-7.63),respectively(P<0.05 both).Acetone dimer,but not dimethyl sulfide,performed better than CA19-9 in PDAC diagnosis(AUROC 0.910 vs 0.796).The AUROC of acetone dimer increased to 0.936 when combined with CA19-9,which was better than CA19-9 alone(P<0.05).CONCLUSION Dimethyl sulfide and acetone dimer are VOCs that potentially distinguish PDAC from IPMN and healthy participants.Additional prospective studies are required to validate these findings.
基金the National Natural Science Foundation of China(52378460 and 51878526)the Program Fund of Non-metallic Excellent and Innovation Center for Building Materials(Grants 2024TDA-3)Knowledge Innovation Program of Wuhan-Basic Research from the Wuhan Science and Technology Bureau(2022020801010176)are gratefully acknowledged.
文摘Recently, researchers in the road field are focusing on the development of green asphalt materials with loweremission of volatile organic compounds (VOCs). The characterization methodology of asphalt VOCs and theinfluencing factors on VOCs release have always been the basic issue of asphalt VOCs emission reduction research.Researchers have proposed a variety of asphalt VOCs characterization methodologies, which also have mutuallyirreplaceable characteristics. Asphalt VOCs volatilization is affected by many factors. In this study, asphalt VOCscharacterization methodologies were summarized, including their advantages, disadvantages, characteristics andapplicable requirements. Subsequently, the influencing factors of VOCs release, such as asphalt types and environment conditions, are summarized to provide theoretical support for the emission reduction research. Theclassification and mechanism of newly-development asphalt VOCs emission reduction materials are reviewed. Thereduction efficiencies are also compared to select better materials and put forward the improvement objective ofnew materials and new processes. In addition, the prospects about development of VOCs release mechanism ofasphalt materials during the full life cycle and feasibility research of high-efficiency composite emission reductionmaterials in the future were put forward.
文摘This paper presents a comprehensive overview of various advanced technologies employed in the treatment of volatile organic compounds(VOCs),which are crucial pollutants in industrial emissions.The study explores different methods,including direct combustion,thermal combustion,catalytic combustion,low-temperature plasma purification,photocatalytic purification,membrane separation,and adsorption methods.Each technology is critically analyzed for its operational principles,efficiency,and applicability under different conditions.Special attention is given to adsorption concentration and catalytic combustion parallel method,highlighting its efficiency in treating low-concentration,high-volume VOC emissions.The paper also delves into the advantages and limitations of each method,providing insights into their effectiveness in various industrial scenarios.The study aims to offer a detailed guide for selecting appropriate VOC treatment technologies,contributing to enhanced environmental protection and sustainable industrial practices.
文摘The asthmatic inflammatory process results in the generation of volatile organic compounds(VOCs),which are subsequently secreted by the airways.The study of these elements through gas chromatography-mass spectrometry(GC-MS),which can identify individual molecules with a discriminatory capacity of over 85%,and electronic-Nose(e-NOSE),which is able to perform a quick onboard pattern-recognition analysis of VOCs,has allowed new prospects for non-invasive analysis of the disease in an"omics"approach.In this review,we aim to collect and compare the progress made in VOCs analysis using the two methods and their instrumental characteristics.Studies have described the potential of GC-MS and e-NOSE in a multitude of relevant aspects of the disease in both children and adults,as well as differential diagnosis between asthma and other conditions such as wheezing,cystic fibrosis,COPD,allergic rhinitis and last but not least,the accuracy of these methods compared to other diagnostic tools such as lung function,FeNO and eosinophil count.Due to significant limitations of both methods,it is still necessary to improve and standardize techniques.Currently,e-NOSE appears to be the most promising aid in clinical practice,whereas GC-MS,as the gold standard for the structural analysis of molecules,remains an essential tool in terms of research for further studies on the pathophysiologic pathways of the asthmatic inflammatory process.In conclusion,the study of VOCs through GC-MS and e-NOSE appears to hold promise for the noninvasive diagnosis,assessment,and monitoring of asthma,as well as for further research studies on the disease.
基金supported by the National Key Research and Development Program of China under Grant No.2016YFF0102100the Pre-Research Project of Civil Aerospace Technology of China under Grant No.D040109.
文摘In this study,we investigated the abatement of volatile organic compounds(VOCs)by the atmospheric pressure microwave plasma torch(AMPT).To study the treatment efficiency of AMPT,we used the toluene and water-based varnish to simulate VOCs,respectively.By measuring the compounds and contents of the mixture gas before/after the microwave plasma process,we have calculated the treatment efficiency of AMPT.The experimental results show that the treatment efficiency of AMPT for toluene with a concentration of 17.32×10^(4) ppm is up to 60 g/kWh with the removal rate of 86%.For the volatile compounds of water-based varnish,the removal efficiency is up to 97.99%.We have demonstrated the higher potential for VOCs removal of the AMPT process.
基金TheNationalNaturalScienceFoundationofChina (No .2 9836 16 0 )
文摘Membrane separation, a new technology for removing VOCs including pervaporation, vapor permeation, membrane contactor, and membrane bioreactor was presented. Comparing with traditional techniques, these special techniques are an efficient and energy saving technology. Vapor permeation can be applied to recovery of organic solvents from exhaust streams. Membrane contactor could be used for removing or recovering VOCs from air or wastewater. Pervaporation and vapor permeation are viable methods for removing VOCs from wastewater to yield a VOC concentrate which could either be destroyed by conventional means, or be recycled for reuse.
基金National Natural Science Foundation of China(31600573)Science and Technology Innovation Guidance Project of Zhaoqing City(201904031601)Guangdong Key Laboratory of Environmental Health and Resource Utilization(2020B121201014).
文摘Biogenic volatile organic compounds(BVOCs)have positive impact on environmental ecology and human physical and mental health.In this paper,the collection methods and components analysis,dynamic release mechanism,ecological function and the impact on human health of BVOCs were summarized.The purpose of this paper is to provide reference and suggestions for further study on the infl uence mechanism of BVOCs on human health,and to provide a theoretical basis for its application in landscape environment.
基金supported by the Fundamental Research Funds for the Central Universities(2015XZZX004-04)Zhejiang Provincial Natural Science Foundation(LR15B030001)~~
文摘Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use of activated carbons as adsorbents and oxide-supported metals as catalysts. Notably, activated carbons easily adsorb water, which strongly hinders the adsorption of VOCs; conventional oxides typically possess relatively low surface areas and random pores, which effectively influence the catalytic conversion of VOCs. Zeolites, in contrast with activated carbons and oxides, can be designed to have very uniform and controllable micropores, in addition to tailored wettability properties, which can favor the selective adsorption of VOCs. In particular, zeolites with selective adsorptive properties when combined with catalytically active metals result in zeolite-supported metals exhibiting significantly improved performance in the catalytic combustion of VOCs compared with conventional oxide-supported catalysts. In this review, recent developments on VOC abatement by adsorptive and catalytic techniques over zeolite-based materials have been briefly summarized.
基金supported by the National High Technology Research and Development Program (863 Program,2015AA034603)the National Natural Science Foundation of China (21377008,201077007,20973017)+1 种基金Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal InstitutionsScientific Research Base Construction-Science and Technology Creation Platform National Materials Research Base Construction~~
文摘Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalysts. Many catalysts including transition metal oxides, mixed metal oxides, and sup‐ported noble metals have been developed. Among these catalysts, the porous ones attract much attention. In this review, we focus on recent advances in the synthesis of ordered mesoporous and macroporous transition metal oxides, perovskites, and supported noble metal catalysts and their catalytic oxidation of VOCs. The porous catalysts outperformed their bulk counterparts. This excel‐lent catalytic performance was due to their high surface areas, high concentration of adsorbed oxy‐gen species, low temperature reducibility, strong interaction between noble metal and support and highly dispersed noble metal nanoparticles and unique porous structures. Catalytic oxidation of carbon monoxide over typical catalysts was also discussed. We made conclusive remarks and pro‐posed future work for the removal of VOCs.