Room temperature ionic liquids(RTILs) are non-volatile organic salts. They may replace conventional coalescing agents in latex coating thus reducing volatile organic compounds(VOCs) emission as well as improving perfo...Room temperature ionic liquids(RTILs) are non-volatile organic salts. They may replace conventional coalescing agents in latex coating thus reducing volatile organic compounds(VOCs) emission as well as improving performance of latex coating products such as better thermal stability, conductivity, and antifouling property. The formation of latex coating containing RTILs can be achieved by encapsulation of RTILs inside particles via miniemulsion polymerization. In this study, the role of RTILs and its concentration on stability of miniemulsion during storage and polymerization were investigated. It has been found that, above a critical concentration(10 wt%), adding more RTILs to oil phase may weaken miniemulsion stability during storage as well as polymerization. Such observations were consistent with the zeta potential measurement for miniemulsions prepared at the similar conditions. The results obtained here would be a useful guideline for the development of new waterborne coating products with desirable functions and particle sizes.展开更多
基金the Low Carbon Automation Manufacture Innovation Team 2011B81006 for the PhD studentshipNingbo Natural Science Foundation funding 2012A610094
文摘Room temperature ionic liquids(RTILs) are non-volatile organic salts. They may replace conventional coalescing agents in latex coating thus reducing volatile organic compounds(VOCs) emission as well as improving performance of latex coating products such as better thermal stability, conductivity, and antifouling property. The formation of latex coating containing RTILs can be achieved by encapsulation of RTILs inside particles via miniemulsion polymerization. In this study, the role of RTILs and its concentration on stability of miniemulsion during storage and polymerization were investigated. It has been found that, above a critical concentration(10 wt%), adding more RTILs to oil phase may weaken miniemulsion stability during storage as well as polymerization. Such observations were consistent with the zeta potential measurement for miniemulsions prepared at the similar conditions. The results obtained here would be a useful guideline for the development of new waterborne coating products with desirable functions and particle sizes.