Based on sedimentary characteristics of the fine-grained rocks of the lower submember of second member of the Lower Cretaceous Shahezi Formation(K_(1)sh_(2)^(L))in the Lishu rift depression,combined with methods of or...Based on sedimentary characteristics of the fine-grained rocks of the lower submember of second member of the Lower Cretaceous Shahezi Formation(K_(1)sh_(2)^(L))in the Lishu rift depression,combined with methods of organic petrology,analysis of major and trace elements as well as biological marker compound,the enrichment conditions and enrichment model of organic matter in the fine-grained sedimentary rocks in volcanic rift lacustrine basin are investigated.The change of sedimentary paleoenvironment controls the vertical distribution of different lithofacies types in the K_(1)sh_(2)^(L)and divides it into the upper and lower parts.The lower part contains massive siliceous mudstone with bioclast-bearing siliceous mudstone,whereas the upper part is mostly composed of laminated siliceous shale and laminated fine-grained mixed shale.The kerogen types of organic matter in the lower and upper parts are typesⅡ_(2)–Ⅲand typesⅠ–Ⅱ_(1),respectively.The organic carbon content in the upper part is higher than that in the lower part generally.The enrichment of organic matter in volcanic rift lacustrine basin is subjected to three favorable conditions.First,continuous enhancement of rifting is the direct factor increasing the paleo-water depth,and the rise of base level leads to the expansion of deep-water mudstone/shale deposition range.Second,relatively strong underwater volcanic eruption and rifting are simultaneous,and such event can provide a lot of nutrients for the lake basin,which is conducive to the bloom of algae,resulting in higher productivity of typesⅠ–Ⅱ_(1)kerogen.Third,the relatively dry paleoclimate leads to a decrease in input of fresh water and terrestrial materials,including TypeⅢkerogen from terrestrial higher plants,resulting in a water body with higher salinity and anoxic stratification,which is more favorable for preservation of organic matter.The organic matter enrichment model of fine-grained sedimentary rocks of volcanic rift lacustrine basin is established,which is of reference significance to the understanding of the organic matter enrichment mechanism of fine-grained sedimentary rocks of Shahezi Formation in Songliao Basin and even in the northeast China.展开更多
Zircon U-Pb ages and geochemical data of volcanic rocks in the Suifenhe Formation in eastern Heilongjiang Province are reported, and their petrogenesis is discussed in this paper. The Suifenhe Formation mainly consist...Zircon U-Pb ages and geochemical data of volcanic rocks in the Suifenhe Formation in eastern Heilongjiang Province are reported, and their petrogenesis is discussed in this paper. The Suifenhe Formation mainly consists of basalt, andesite, and dacite. Zircon from andesite and dacite are euhedral in shape and show typical oscillatory zoning with high Th/U ratios (0.18-0.57), implying its magmatic origin. Zircon U-Pb dating results by laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) indicate that the ^206Pb/^238U ages of zircons from andesite range within 105- 106 Ma, yielding a weighted mean age of 105.5±0.8 Ma (n=14), and that ^206pb/^238U ages of zircons from dacite are between 90-96 Ma, yielding a weighted mean age of 93.2±1.3 Ma (n =13). The volcanic rocks from the Snifenhe Formation are subalkaline series and show a calc-alkaline evolutionary trend with SiO2 content of 47.69%-65.47%, MgO contents of 1.42%-6.80% (Mg^#= 45-53), and Na2O/K2O ratios of 1.83-3.63. They are characterized by enrichment in large ion lithophile elements (LILE) and lightrare-earth elements (LREE), depletion in heavy rare earth elements (HREE) and high field strength elements (HFSE) (e.g., Nb, Ta, Ti), and low initial ^87Sr/^86Sr ratios (0.7041-0.7057) and positive εNd(t) ValUes (0.39-4.08), implying that they could be derived from a depleted magma source. Taken together, these results suggest that the primary magma of the volcanic rocks might originate from partial melting of the mantle wedge metasomatized by fluids derived from subducted slab under a tectonic setting of active continental margin.展开更多
The Xujiaweizi Fault Depression is located in the northern Songliao Basin,Northeast China.The exploration results show that the most favorable natural gas reservoirs are in the volcanic rocks of the Yingcheng Formatio...The Xujiaweizi Fault Depression is located in the northern Songliao Basin,Northeast China.The exploration results show that the most favorable natural gas reservoirs are in the volcanic rocks of the Yingcheng Formation(K 1 yc).Based on seismic interpretation,drill cores and the results of previous research,we analyzed the distribution of faults and the thickness of volcanic rocks in different periods of K 1 yc,and studied the relationship of volcanic activities and main faults.Volcanic rocks were formed in the Yingcheng period when the magma erupted along pre-existing fault zones.The volcanic activities strongly eroded the faults during the eruption process,which resulted in the structural traces in the seismic section being diffuse and unclear.The tectonic activities weakened in the study area in the depression stage.The analysis of seismic interpretation,thin section microscopy and drill cores revealed that a large number of fractures generated in the volcanic rocks were affected by later continued weak tectonic activities,which greatly improved the physical properties of volcanic reservoirs,and made the volcanic rocks of K 1 yc be favorable natural gas reservoirs.The above conclusions provide the basis to better understand the relationship of the volcanic rock distribution and faults,the mechanism of volcanic eruption and the formation of natural gas reservoirs in volcanic rocks.展开更多
Objective A large number of Mesozoic volcano-sedimentary basins is distributed in southern Jilin Province,China,and filled with a great set of coal-bearing strata.According to the petroleum resources evaluation by pre...Objective A large number of Mesozoic volcano-sedimentary basins is distributed in southern Jilin Province,China,and filled with a great set of coal-bearing strata.According to the petroleum resources evaluation by previous researchers,these basins have decent exploration potential(Wang Dandan et al.,2017).The Liuhe Basin is one of the展开更多
The discoveries of oil and gas reservoirs in the volcanic rocks of the Songliao Basin(SB) have attracted the attention of many researchers. However, the lack of studies on the genesis of the volcanic rocks has led to ...The discoveries of oil and gas reservoirs in the volcanic rocks of the Songliao Basin(SB) have attracted the attention of many researchers. However, the lack of studies on the genesis of the volcanic rocks has led to different opinions being presented for the genesis of the SB. In order to solve this problem, this study selected the volcanic rocks of the Yingcheng Formation in the Southern Songliao Basin(SSB) as the research object, and determined the genesis and tectonic setting of the volcanic rocks by using LA-ICP-MS zircon U-Pb dating and a geochemical analysis method(major elements, trace elements, and Hf isotopes). The volcanic rocks of the Yingcheng Formation are mainly composed of rhyolites with minor dacites and pyroclastic rocks. Our new zircon U-Pb dating results show that these volcanic rocks were erupted in the Early Cretaceous(113–118 Ma). The primary zircons from the rhyolites have εHf(t) values of +4.70 to +12.46 and twostage model age(TDM2) of 876–374 Ma. The geochemical data presented in this study allow these rhyolites to be divided into I-type rhyolites and A-type rhyolites, both of which were formed by the partial melting of the crust. They have SiO2 contents of 71.62 wt.%–75.76 wt.% and Al2 O3 contentsof 10.88 wt.% to 12.92 wt.%. The rhyolites have distinctively higher REE contents than those of ordinary granites, with obvious negative Eu anomalies. The light to heavy REE fractionation is not obvious, and the LaN/YbN(average value = 9.78) is less than 10. The A-type rhyolites depleted in Ba, Sr, P, and Ti, with relatively low Nb/Ta, indicating that the rocks belong A2 subtype granites formed in an extensional environment. The adakitic dacites are characterized by high Sr contents(624 to 1,082 ppm), low Y contents(10.6 to 12.6 ppm), high Sr/Y and Sr/Yb ratios, and low Mg# values(14.77 to 36.46), indicating that they belong to "C" type adakites. The adakitic dacite with high Sr and low Yb were likely generated by partial melting of the lower crust under high pressure conditions at least 40 km depth. The I-type rhyolites with low Sr and high Yb, and the A-type rhyolites with very low Sr and high Yb, were formed in the middle and upper crust under low pressure conditions, respectively. In addition, the formation depths of the former were approximately 30 km, whereas those of the latter were less than 30 km. The geochemical characteristics reveal that the volcanic rocks of Yingcheng Formation were formed in an extensional environment which was related to the retreat of subducted Paleo-Pacific Plate. At the late Early Cretaceous Period, the upwelling of the asthenosphere mantle and the lithosphere delamination caused by the retreat of the subducted Paleo-Pacific Plate, had resulted in lithosheric extension in the eastern part of China. Subsequently, a large area of volcanic rocks had formed. The SB has also been confirmed to be a product of the tectonic stress field in that region.展开更多
Objective The Huoshiling Formation is the earliest volcanic stratum in the Songliao Basin,composed mainly of intermediate-basic volcanic rocks,with rare fossils.The geological age of this formation has been controvers...Objective The Huoshiling Formation is the earliest volcanic stratum in the Songliao Basin,composed mainly of intermediate-basic volcanic rocks,with rare fossils.The geological age of this formation has been controversial for long.展开更多
Objective Mesozoic volcanic rocks are mainly distributed in the Da Hinggan Mountains.The Baiyingaolao Formation is the main stratum in this area and has been considered to be formed in the Late Jurassic.Many scholars ...Objective Mesozoic volcanic rocks are mainly distributed in the Da Hinggan Mountains.The Baiyingaolao Formation is the main stratum in this area and has been considered to be formed in the Late Jurassic.Many scholars have researched these Mesozoic volcanic rocks in this area,which have been much debatable(Zhang Xiangxin et al.,2017).A series of studies focusing on the Baiyingaolao Formation volcanic rocks in the middle-south section of展开更多
Objective The potassic and ultrapotassic rocks relating to the India-Eurasia collision and continual plate convergence are widely distributed in the Lhasa terrane. These rocks are very important to understand the dee...Objective The potassic and ultrapotassic rocks relating to the India-Eurasia collision and continual plate convergence are widely distributed in the Lhasa terrane. These rocks are very important to understand the deep processes of the India-Eurasia collision and the uplift and evolution of the Tibetan Plateau. Although high-potassic volcanic rocks are also exposed in the western Lhasa terrane, their formation time is still uncertain for the lack of reliable dating. We carried out zircon U-Pb geochronological study on the Langjiu Formation volcanic rocks, which are part of the Early Cretaceous Zenong group volcanic rocks based on 1:250000 scale Shiquanhe regional geological survey report, in the Shiquanhe area of the western Lhasa terrane. These new age data not only offer chronological basis for the regional stratigraphic correlation and classification, but also provide an essential opportunity for revealing signatures of magmatic pulses hidden in the deep crust of the Lhasa terrane.展开更多
Ningwu Basin is one of the Mesozoic continental volcanic basins in the middle and lower reaches of the Yangtze River.The volcanic rocks of the Longwangshan,dawangshan,Gushan and Niangniangshan formations,as well as th...Ningwu Basin is one of the Mesozoic continental volcanic basins in the middle and lower reaches of the Yangtze River.The volcanic rocks of the Longwangshan,dawangshan,Gushan and Niangniangshan formations,as well as the homologous subvolcanic rocks or small intrusions,are developed from old to new in the Ningwu Basin.Zircon U-Pb dating results show the latialite phonolite of Niangniangshan Formation was erupted at 128±1 Ma(i.e.,Early Cretaceous).The latialite phonolite contains moderate SiO2 contents(57.28%-60.96%)with high Na 2O+K 2O contents,belonging to shoshonite series.The samples have high REE contents,and display right-inclined REE distribution pattern.They are characterized by enrichment in some large ion lithophile elements(e.g.,LILEs,Rb,K),and depletion in some high field strength elements(e.g.,HFSEs,Nb,Ta,Ti).All volcanic samples have relatively depleted Nd isotopic compositions(ISr=0.707197--0.707878;εNd(t)=-0.5--0.9),indicating no genetic relationship with the lower crust of Yangtze plate,but a drift trend towards the EMII.The geochemical data suggest that the Early Cretaceous latialite phonolite was derived from the partial melting of an enriched lithospheric mantle metasomatized by subduction-related fluids in an arc-related setting.Based on the temporal and spatial distribution and geochemical variation characteristics of the regional volcanic rocks,it is suggested that the tectonic system within the study area changed from a subduction-related compression to an extensional environment in the early Early Cretaceous,which was caused by the ridge subduction of the Paleo-Pacific Ocean.展开更多
By using petrological,isotope chronological,and geochemical methods,the authors studied the volcanic rocks in the studied area,mainly including dacites and trachytes. The results show that they formed during the late ...By using petrological,isotope chronological,and geochemical methods,the authors studied the volcanic rocks in the studied area,mainly including dacites and trachytes. The results show that they formed during the late Early Cretaceous. Geochemically,the volcanic rocks are relatively enriched in large-ion lithophile elements( Rb,K,and Th) and depleted in high field strength elements( Nb,Ta,and Ti),and rich in light rare earth elements,and depleted in heavy rare earth elements. The fact indicates that the main body of the volcanic rocks in the Qushenla Formation was derived from the partial melting of lower crust. The lithological assemblages are characterized by continental high-K calc-alkaline and shoshonitic series,suggesting that the southward-subducting oceanic slab in southern Bangong Lake had break off and that the Bangong Lake-Nujiang Ocean had closed before 107 Ma. The main dynamic mechanisms for the genesis of this set of intermediate-acidic volcanic rocks were upwelling of the asthenosphere and partial melting of the lower crust caused by slab break-off.展开更多
The Early Neoproterozoic Beiyixi Formation volcanic rocks of the southern Quruqtagh comprise mainly of a suite of tholeiitic basalts, alkaline andesites, and calc-alkaline rhyolites. The rhyolites are characterized by...The Early Neoproterozoic Beiyixi Formation volcanic rocks of the southern Quruqtagh comprise mainly of a suite of tholeiitic basalts, alkaline andesites, and calc-alkaline rhyolites. The rhyolites are characterized by variably fractionated enrichment in light rare earth elements (LREE) and fiat in heavy rare earth elements (HREE), and strongly negative Eu anomalies. Compared to the rhyolites, the andesites also exhibit enrichment in LREE and flat HREE (chondrite-normalized values of La/Yb,and La/Sm are 13.30-41.09, 3.18-6.89 respectively). Their rare earth element patterns display minor negative Eu anomalies. Both of them exhibit coherent patterns with strongly to moderately negative anomalies of Nb, Zr, Ti, and Hf on spider diagrams. Two rhyolite and one andesite magmatic zircons with defined oscillatory zoning yielded weighted mean 206pb/23Su ages of 743 ± 7 Ma, 741±2 Ma, and 7274 Ma. These ages are interpreted to represent the timing of volcanic eruptions. According to geochemistry and rock type, these volcanic rocks formed within a continental island-arc environment following subduction of the oceanic crust during the Early Neoproterozoic period.展开更多
This work presents zircon U–Pb age and wholerock geochemical data for the volcanic rocks from the Lakang Formation in the southeastern Tethyan Himalaya and represents the initial activity of the Kerguelen mantle plum...This work presents zircon U–Pb age and wholerock geochemical data for the volcanic rocks from the Lakang Formation in the southeastern Tethyan Himalaya and represents the initial activity of the Kerguelen mantle plume. SHRIMP U–Pb dating of zircons from the volcanic rocks yielded a ^(206) Pb/^(238) U age of 147 ± 2 Ma that reflects the time of Late Jurassic magmatism. Whole rock analyses of major and trace elements show that the volcanic rocks are characterized by high content of Ti O_2(2.62 wt%–4.25 wt%) and P_2O_5(0.38 wt%–0.68 wt%), highly fractionated in LREE/HREE [(La/Yb)N= 5.35–8.31] with no obvious anomaly of Eu, and HFSE enrichment with no obvious anomaly of Nb and Ta, which are similar to those of ocean island basalts and tholeiitic basaltic andesites indicating a mantle plume origin. The Kerguelen mantle plume produced a massive amount of magmatic rocks from Early Cretaceous to the present, which widely dispersed from their original localities of emplacement due to the changing motions of the Antarctic, Australian, and Indian plates. However, our new geochronological and geochemical results indicate that the Kerguelen mantle plume started from the Late Jurassic. Furthermore, we suggest that the Kerguelen mantle plume may played a significant role in the breakup of eastern Gondwanaland according to the available geochronological, geochemical and paleomagnetic data.展开更多
A gas field consisting of volcanic reservoir rocks was discovered in the block-T units of the Xihu Sag,East China Sea Basin.The lithology of the volcanic rocks is dominated by tuff and reworked tuff.The lithofacies ar...A gas field consisting of volcanic reservoir rocks was discovered in the block-T units of the Xihu Sag,East China Sea Basin.The lithology of the volcanic rocks is dominated by tuff and reworked tuff.The lithofacies are dominated by base surge deposits of explosive facies.As the architecture model of volcanic facies is still uncertain,it has restricted the exploration and development of mineral resources in this area.Using core and cuttings data,the lithology,lithofacies,geochemistry as well as grain size characteristics of volcanic rocks were analyzed.Based on these analyses,the volcanic rocks in the well section are divided into three eruptive stages.The transport direction of each volcanic eruption is analyzed using crystal fragment size analysis.The facies architecture of the block-T units was established based on the reconstruction results of paleo-geomorphology.The results show that the drilling reveals proximal facies(PF)and distal facies(DF)of the volcanic edifices.However,the crater-near crater facies(CNCF)are not revealed.Compared with the reservoirs of the Songliao Basin,it is shown that the volcanic rocks in the Xihu Sag have good exploration potential;a favorable target area is the CNCF near the contemporaneous fault.展开更多
The high-Mg volcanic rocks of the Yixian Formation in the Sihetun area have the obvious characteristics of mantie-derived lava in rare earth, trace element characteristics with high Mg # (62 - 70) and high content o...The high-Mg volcanic rocks of the Yixian Formation in the Sihetun area have the obvious characteristics of mantie-derived lava in rare earth, trace element characteristics with high Mg # (62 - 70) and high content of compatible elements. In the meantime, the volcanic rocks also have the obvious characteristics of Crust-source material in rare earth, trace element characteristics with high ∑ REE ( 158.78 × 10^-6 - 359.66 × 10^-6 ), high (La/Yb) N ( 14.61 - 29.60), high La/Nb(2.37 - 7.52) and high Ba/Nb (67.58- 205.96), obvious positive anomaly of Pb and negative anomaly of Nb, Ta in trace element spider-gram. In Sr-Nd-Pb isotope the (^87Sr/^86Sr)i ratio is higher than 0.706 and the εNd( t ) ratio is from - 3.4 to - 13, both reflect enriched Mantle characteristics. The characteristics above of the volcanic rocks combined with the content of Sr, Ba, Y, Yb and the ratio of Sr/Y show that the volcanic rocks have the property of the Sanukite rocks in Setouchi Japan beside subduction zone, and illuminate that the Sanukite rocks can be formed not only in island-arc near subduction zone but also in intro-plate. The analysis indicates that the high-Mg volcanic rocks in the Sihetun area result from the collective function of mantle-derived lava and crust-source materials. The result illuminates that the West Liaoning region is very special in tectonic geochemical background in Cretaceous in East China, and is an ideal region for us to further study the characteristics of magmatic activity as well as the process of Crust-Mantle interaction in Eastern China.展开更多
The authors studied zircon LA-ICP-MS U-Pb dating,the zircon Hf isotope and geochemistry of acidic volcanic rocks in Baiyingaolao Formation of Keyouzhongqi area,Inner Mongolia,and discussed the chronology,source region...The authors studied zircon LA-ICP-MS U-Pb dating,the zircon Hf isotope and geochemistry of acidic volcanic rocks in Baiyingaolao Formation of Keyouzhongqi area,Inner Mongolia,and discussed the chronology,source region and tectonic setting of the volcanic rocks in the studied area. The clear oscillatory zoning of zircons indicates a typical magmatic origin,and the results of dating show that the volcanic rocks of Baiyingaolao Formation were formed in Early Cretaceous( 121. 5 ± 1. 0 Ma). The features of major and trace elements show that the rocks are alkali-rich,poor in calcium and magnesium with enrichment in LILEs like Th,U,K and Gd and depletion in HFSEs,e. g. Nb,Ta,Sr and Ti. The fact implies that they were the products of partial melting of the crust. εHf( t) =( +6.30--+9.06) and TDM2= 600--835 Ma,suggest the magma originated from partial melting of the young crust. Combined with the evolution of regional tectonic structure,the authors conclude that the acidic volcanic rocks of Baiyingaolao Formation may be formed under the extensional environment related to the subduction of Paleo-Pacific Plate.展开更多
Based on outcrop, drilling, logging, geochemical analysis and seismic data, the karst landform and distribution of Permian volcanic rocks at the end of the sedimentary period of the Maokou Formation in the western Sic...Based on outcrop, drilling, logging, geochemical analysis and seismic data, the karst landform and distribution of Permian volcanic rocks at the end of the sedimentary period of the Maokou Formation in the western Sichuan Basin are examined, and their petroleum geological significance is discussed. Affected by normal faults formed in the early magmatic activities and extension tectonic background in the late sedimentary period of the Maokou Formation, a local karst shallow depression under the background of karst slope came up in the Jianyang area of the western Sichuan Basin, where the residual thickness of the Maokou Formation was thinner. Basic volcanic rocks like pyroclastic rock of eruptive facies, basalt of overflow facies, diabase porphyrite of intrusive facies and sedimentary tuff of volcanic sedimentary facies were formed after karstification. However, under the effects of faulting and karst paleogeomorphology, the volcanic rocks in different areas had different accumulation features. In the Jianyang area, with long eruption time, the volcanic rocks were thick and complex in lithology, and accumulated in the karst depressions. In the Zhongjiang-Santai area located in the karst slope, there’s no fault developed, only thin layers of basalt and sedimentary tuff turned up. The karst landform controls the build-up of thick explosive facies volcanic rocks and also the development of karst reservoirs in the Maokou Formation, and the western Sichuan area has oil and gas exploration potential in volcanic rocks and the Maokou Formation.展开更多
The Nanyuan Formation contains information related to the Mesozoic tectonic transformation.In this study,three representative profiles were surveyed from the Nanyuan Formation,and multiple analyses were conducted.Zirc...The Nanyuan Formation contains information related to the Mesozoic tectonic transformation.In this study,three representative profiles were surveyed from the Nanyuan Formation,and multiple analyses were conducted.Zircon U-Pb dating yielded their ages as approximately 158–146 Ma.The volcanic rocks are enriched in Rb,Th,U,K,and Pb and depleted in Nb,Ta,P,and Ti,implying their affinity for I-type granites.TheεNd(t)values(-8.3 to-6.0),^(87)Sr/^(86)Sr)i values(0.7077–0.7094)of the volcanic rock,andεHf(t)values(-8.71 to 0.12)of the Mesozoic zircons suggest that the Nanyuan Formation magma originated in the lower crust with the involvement of depleted mantle materials.The parent rocks of the rhyolitic and dacitic volcanic rocks formed by partial melting of basement rocks in South China and the andesitic volcanic rocks were derived from partial melting of the metasomatites generated by slab-mantle interaction.The fractional crystallization also played an important role in later stage.Discrimination diagrams of the volcanic rocks indicated that they formed in a volcanic arc environment.Combined with previous data,the Nanyuan Formation recorded subduction of the Paleo-Pacific Plate before regional tectonic transformation.The compressive stress field endured until the end of the Late Jurassic.展开更多
The Permian Chert Event is of great significance to understanding the geological evolution of the entire Permian; however,the origin of widespread chert formation is debated. We report new geochemical data from deep-m...The Permian Chert Event is of great significance to understanding the geological evolution of the entire Permian; however,the origin of widespread chert formation is debated. We report new geochemical data from deep-marine siliceous rocks of the upper Permian Da-long Formation, Lower Yangtze region, southeastern China. Their geochemical results show that these thin-bedded siliceous rocks have a clear biologic origin, with rare to no evidence of hydrothermal influence. The values of Al/(Al + Fe + Mn) and Eu/Eu~* are 0.60-0.84(mean = 0.72) and 0.45-1.08(mean = 0.77), respectively, and Mn/Ti ratios are relatively low(mean = 0.72). The correlations of LaN/CeN, LaN/YbN, and Fe203/Ti02 with Al_2 O_3/(Al_2 O_3 + Fe_2 O_3), along with the Ce anomaly, indicate that the Da-long siliceous rocks were deposited at a transitional zone between a continental margin and the open ocean; i.e., relatively close to terrestrial sediment input and far from hydrothermal activity. The accumulation of chert is related to its unique paleogeographic location in an equatorial setting with many submarine paleo-highlands.Intense upwelling and frequent local volcanism are the main factors that promoted the development of siliceous rocks in the studied area. Ocean acidification triggered by large-scale volcanism(Large Igneous Province) during the late Permian led to extensive silica precipitation and preservation.展开更多
The characteristics of rare earth elements in the Devonian and Carboniferous volcanic rocks were studied in the north Altay. And the mechanism of formation of volcanic rocks were discussed by using the rare earth elem...The characteristics of rare earth elements in the Devonian and Carboniferous volcanic rocks were studied in the north Altay. And the mechanism of formation of volcanic rocks were discussed by using the rare earth elements. The correlativity of rare earth elements and major elements shows that the fractional crystallization is undistinguishable during the formation of Devonian and Carboniferous volcanic rocks, and the mechanism of formation of volcanic rocks may be the partial melting. The further study of the relationship of manifold rare earth elements shows that the mechanism of formation of Devonian and Carboniferous volcanic rocks in the north Altay is the partial melting. And the result also shows that the rare earth elements in the Devonian and Carboniferous volcanic rocks inherited the characteristics of those in its source materiels.展开更多
The Lower Cretaceous Jiufotang Formation in western Liaoning is the most important fossil production horizon of the Jehol Biota, which is widely distributed in the Mesozoic basins of western Liaoning. Due to the influ...The Lower Cretaceous Jiufotang Formation in western Liaoning is the most important fossil production horizon of the Jehol Biota, which is widely distributed in the Mesozoic basins of western Liaoning. Due to the influence of historical data, previous scholars believed that there was no volcanic activity in the Jiufotang Formation in western Liaoning. In a field investigation in western Liaoning, the authors discovered basalt and andesite in the Hujiayingzi bed. In addition, a conformable boundary was found between the Yixian and the Jiufotang formations. It indicates that both the Jiufotang Formation and the Yixian Formation are strata containing volcanic-sedimentary rocks, only differing in strength of volcanic activity.展开更多
基金Supported by the National Science and Technology Major Project of China(2017ZX05009-002)National Natural Science Foundation of China(41772090)。
文摘Based on sedimentary characteristics of the fine-grained rocks of the lower submember of second member of the Lower Cretaceous Shahezi Formation(K_(1)sh_(2)^(L))in the Lishu rift depression,combined with methods of organic petrology,analysis of major and trace elements as well as biological marker compound,the enrichment conditions and enrichment model of organic matter in the fine-grained sedimentary rocks in volcanic rift lacustrine basin are investigated.The change of sedimentary paleoenvironment controls the vertical distribution of different lithofacies types in the K_(1)sh_(2)^(L)and divides it into the upper and lower parts.The lower part contains massive siliceous mudstone with bioclast-bearing siliceous mudstone,whereas the upper part is mostly composed of laminated siliceous shale and laminated fine-grained mixed shale.The kerogen types of organic matter in the lower and upper parts are typesⅡ_(2)–Ⅲand typesⅠ–Ⅱ_(1),respectively.The organic carbon content in the upper part is higher than that in the lower part generally.The enrichment of organic matter in volcanic rift lacustrine basin is subjected to three favorable conditions.First,continuous enhancement of rifting is the direct factor increasing the paleo-water depth,and the rise of base level leads to the expansion of deep-water mudstone/shale deposition range.Second,relatively strong underwater volcanic eruption and rifting are simultaneous,and such event can provide a lot of nutrients for the lake basin,which is conducive to the bloom of algae,resulting in higher productivity of typesⅠ–Ⅱ_(1)kerogen.Third,the relatively dry paleoclimate leads to a decrease in input of fresh water and terrestrial materials,including TypeⅢkerogen from terrestrial higher plants,resulting in a water body with higher salinity and anoxic stratification,which is more favorable for preservation of organic matter.The organic matter enrichment model of fine-grained sedimentary rocks of volcanic rift lacustrine basin is established,which is of reference significance to the understanding of the organic matter enrichment mechanism of fine-grained sedimentary rocks of Shahezi Formation in Songliao Basin and even in the northeast China.
基金the National Natural Science Foundation of China (Grant No. 40672038) the Special Grant of 0il & Gas Research (XQ-2004-07).
文摘Zircon U-Pb ages and geochemical data of volcanic rocks in the Suifenhe Formation in eastern Heilongjiang Province are reported, and their petrogenesis is discussed in this paper. The Suifenhe Formation mainly consists of basalt, andesite, and dacite. Zircon from andesite and dacite are euhedral in shape and show typical oscillatory zoning with high Th/U ratios (0.18-0.57), implying its magmatic origin. Zircon U-Pb dating results by laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) indicate that the ^206Pb/^238U ages of zircons from andesite range within 105- 106 Ma, yielding a weighted mean age of 105.5±0.8 Ma (n=14), and that ^206pb/^238U ages of zircons from dacite are between 90-96 Ma, yielding a weighted mean age of 93.2±1.3 Ma (n =13). The volcanic rocks from the Snifenhe Formation are subalkaline series and show a calc-alkaline evolutionary trend with SiO2 content of 47.69%-65.47%, MgO contents of 1.42%-6.80% (Mg^#= 45-53), and Na2O/K2O ratios of 1.83-3.63. They are characterized by enrichment in large ion lithophile elements (LILE) and lightrare-earth elements (LREE), depletion in heavy rare earth elements (HREE) and high field strength elements (HFSE) (e.g., Nb, Ta, Ti), and low initial ^87Sr/^86Sr ratios (0.7041-0.7057) and positive εNd(t) ValUes (0.39-4.08), implying that they could be derived from a depleted magma source. Taken together, these results suggest that the primary magma of the volcanic rocks might originate from partial melting of the mantle wedge metasomatized by fluids derived from subducted slab under a tectonic setting of active continental margin.
基金supported by the Major State Basic Research Development Program of China (973 Program(No.2012CB214705))the National Natural Science Foundation of China (No. 41206035)
文摘The Xujiaweizi Fault Depression is located in the northern Songliao Basin,Northeast China.The exploration results show that the most favorable natural gas reservoirs are in the volcanic rocks of the Yingcheng Formation(K 1 yc).Based on seismic interpretation,drill cores and the results of previous research,we analyzed the distribution of faults and the thickness of volcanic rocks in different periods of K 1 yc,and studied the relationship of volcanic activities and main faults.Volcanic rocks were formed in the Yingcheng period when the magma erupted along pre-existing fault zones.The volcanic activities strongly eroded the faults during the eruption process,which resulted in the structural traces in the seismic section being diffuse and unclear.The tectonic activities weakened in the study area in the depression stage.The analysis of seismic interpretation,thin section microscopy and drill cores revealed that a large number of fractures generated in the volcanic rocks were affected by later continued weak tectonic activities,which greatly improved the physical properties of volcanic reservoirs,and made the volcanic rocks of K 1 yc be favorable natural gas reservoirs.The above conclusions provide the basis to better understand the relationship of the volcanic rock distribution and faults,the mechanism of volcanic eruption and the formation of natural gas reservoirs in volcanic rocks.
基金supported by the research project of Exploration Department of Jilin Oilfield Company Ltd. (grant No. JLYTJS11W23FW2275)
文摘Objective A large number of Mesozoic volcano-sedimentary basins is distributed in southern Jilin Province,China,and filled with a great set of coal-bearing strata.According to the petroleum resources evaluation by previous researchers,these basins have decent exploration potential(Wang Dandan et al.,2017).The Liuhe Basin is one of the
基金financially supported by the National Key Research and Development Program(Grant No.2018YFC0603804)the China Geological Survey(Grant Nos.DD20190042 and DD20190039)。
文摘The discoveries of oil and gas reservoirs in the volcanic rocks of the Songliao Basin(SB) have attracted the attention of many researchers. However, the lack of studies on the genesis of the volcanic rocks has led to different opinions being presented for the genesis of the SB. In order to solve this problem, this study selected the volcanic rocks of the Yingcheng Formation in the Southern Songliao Basin(SSB) as the research object, and determined the genesis and tectonic setting of the volcanic rocks by using LA-ICP-MS zircon U-Pb dating and a geochemical analysis method(major elements, trace elements, and Hf isotopes). The volcanic rocks of the Yingcheng Formation are mainly composed of rhyolites with minor dacites and pyroclastic rocks. Our new zircon U-Pb dating results show that these volcanic rocks were erupted in the Early Cretaceous(113–118 Ma). The primary zircons from the rhyolites have εHf(t) values of +4.70 to +12.46 and twostage model age(TDM2) of 876–374 Ma. The geochemical data presented in this study allow these rhyolites to be divided into I-type rhyolites and A-type rhyolites, both of which were formed by the partial melting of the crust. They have SiO2 contents of 71.62 wt.%–75.76 wt.% and Al2 O3 contentsof 10.88 wt.% to 12.92 wt.%. The rhyolites have distinctively higher REE contents than those of ordinary granites, with obvious negative Eu anomalies. The light to heavy REE fractionation is not obvious, and the LaN/YbN(average value = 9.78) is less than 10. The A-type rhyolites depleted in Ba, Sr, P, and Ti, with relatively low Nb/Ta, indicating that the rocks belong A2 subtype granites formed in an extensional environment. The adakitic dacites are characterized by high Sr contents(624 to 1,082 ppm), low Y contents(10.6 to 12.6 ppm), high Sr/Y and Sr/Yb ratios, and low Mg# values(14.77 to 36.46), indicating that they belong to "C" type adakites. The adakitic dacite with high Sr and low Yb were likely generated by partial melting of the lower crust under high pressure conditions at least 40 km depth. The I-type rhyolites with low Sr and high Yb, and the A-type rhyolites with very low Sr and high Yb, were formed in the middle and upper crust under low pressure conditions, respectively. In addition, the formation depths of the former were approximately 30 km, whereas those of the latter were less than 30 km. The geochemical characteristics reveal that the volcanic rocks of Yingcheng Formation were formed in an extensional environment which was related to the retreat of subducted Paleo-Pacific Plate. At the late Early Cretaceous Period, the upwelling of the asthenosphere mantle and the lithosphere delamination caused by the retreat of the subducted Paleo-Pacific Plate, had resulted in lithosheric extension in the eastern part of China. Subsequently, a large area of volcanic rocks had formed. The SB has also been confirmed to be a product of the tectonic stress field in that region.
基金supported by the research project of Exploration and Development Research Institute of Jilin Oilfield Company Ltd.(grant No.JLYT-YJY-2013-JS-305)
文摘Objective The Huoshiling Formation is the earliest volcanic stratum in the Songliao Basin,composed mainly of intermediate-basic volcanic rocks,with rare fossils.The geological age of this formation has been controversial for long.
基金supported by the Natural Science Foundation of Heilongjiang Province,China(grant No.QC2017035)
文摘Objective Mesozoic volcanic rocks are mainly distributed in the Da Hinggan Mountains.The Baiyingaolao Formation is the main stratum in this area and has been considered to be formed in the Late Jurassic.Many scholars have researched these Mesozoic volcanic rocks in this area,which have been much debatable(Zhang Xiangxin et al.,2017).A series of studies focusing on the Baiyingaolao Formation volcanic rocks in the middle-south section of
基金granted by the National Natural Science Foundation of China (Grant No.41572205)
文摘Objective The potassic and ultrapotassic rocks relating to the India-Eurasia collision and continual plate convergence are widely distributed in the Lhasa terrane. These rocks are very important to understand the deep processes of the India-Eurasia collision and the uplift and evolution of the Tibetan Plateau. Although high-potassic volcanic rocks are also exposed in the western Lhasa terrane, their formation time is still uncertain for the lack of reliable dating. We carried out zircon U-Pb geochronological study on the Langjiu Formation volcanic rocks, which are part of the Early Cretaceous Zenong group volcanic rocks based on 1:250000 scale Shiquanhe regional geological survey report, in the Shiquanhe area of the western Lhasa terrane. These new age data not only offer chronological basis for the regional stratigraphic correlation and classification, but also provide an essential opportunity for revealing signatures of magmatic pulses hidden in the deep crust of the Lhasa terrane.
基金Supported by Project of China Geological Survey(No.1212011220679)
文摘Ningwu Basin is one of the Mesozoic continental volcanic basins in the middle and lower reaches of the Yangtze River.The volcanic rocks of the Longwangshan,dawangshan,Gushan and Niangniangshan formations,as well as the homologous subvolcanic rocks or small intrusions,are developed from old to new in the Ningwu Basin.Zircon U-Pb dating results show the latialite phonolite of Niangniangshan Formation was erupted at 128±1 Ma(i.e.,Early Cretaceous).The latialite phonolite contains moderate SiO2 contents(57.28%-60.96%)with high Na 2O+K 2O contents,belonging to shoshonite series.The samples have high REE contents,and display right-inclined REE distribution pattern.They are characterized by enrichment in some large ion lithophile elements(e.g.,LILEs,Rb,K),and depletion in some high field strength elements(e.g.,HFSEs,Nb,Ta,Ti).All volcanic samples have relatively depleted Nd isotopic compositions(ISr=0.707197--0.707878;εNd(t)=-0.5--0.9),indicating no genetic relationship with the lower crust of Yangtze plate,but a drift trend towards the EMII.The geochemical data suggest that the Early Cretaceous latialite phonolite was derived from the partial melting of an enriched lithospheric mantle metasomatized by subduction-related fluids in an arc-related setting.Based on the temporal and spatial distribution and geochemical variation characteristics of the regional volcanic rocks,it is suggested that the tectonic system within the study area changed from a subduction-related compression to an extensional environment in the early Early Cretaceous,which was caused by the ridge subduction of the Paleo-Pacific Ocean.
基金Supported by project of National Natural Science Foundation of China(No.41172056)
文摘By using petrological,isotope chronological,and geochemical methods,the authors studied the volcanic rocks in the studied area,mainly including dacites and trachytes. The results show that they formed during the late Early Cretaceous. Geochemically,the volcanic rocks are relatively enriched in large-ion lithophile elements( Rb,K,and Th) and depleted in high field strength elements( Nb,Ta,and Ti),and rich in light rare earth elements,and depleted in heavy rare earth elements. The fact indicates that the main body of the volcanic rocks in the Qushenla Formation was derived from the partial melting of lower crust. The lithological assemblages are characterized by continental high-K calc-alkaline and shoshonitic series,suggesting that the southward-subducting oceanic slab in southern Bangong Lake had break off and that the Bangong Lake-Nujiang Ocean had closed before 107 Ma. The main dynamic mechanisms for the genesis of this set of intermediate-acidic volcanic rocks were upwelling of the asthenosphere and partial melting of the lower crust caused by slab break-off.
基金supported by the"Fivesecond"National Science and Technology Support Program(No.2011BAB04B05)Technology and Development Project of China Petroleum & Chemical Zorporation(No.YPH08110)Chinese Geological Survey(No.1212011121091)
文摘The Early Neoproterozoic Beiyixi Formation volcanic rocks of the southern Quruqtagh comprise mainly of a suite of tholeiitic basalts, alkaline andesites, and calc-alkaline rhyolites. The rhyolites are characterized by variably fractionated enrichment in light rare earth elements (LREE) and fiat in heavy rare earth elements (HREE), and strongly negative Eu anomalies. Compared to the rhyolites, the andesites also exhibit enrichment in LREE and flat HREE (chondrite-normalized values of La/Yb,and La/Sm are 13.30-41.09, 3.18-6.89 respectively). Their rare earth element patterns display minor negative Eu anomalies. Both of them exhibit coherent patterns with strongly to moderately negative anomalies of Nb, Zr, Ti, and Hf on spider diagrams. Two rhyolite and one andesite magmatic zircons with defined oscillatory zoning yielded weighted mean 206pb/23Su ages of 743 ± 7 Ma, 741±2 Ma, and 7274 Ma. These ages are interpreted to represent the timing of volcanic eruptions. According to geochemistry and rock type, these volcanic rocks formed within a continental island-arc environment following subduction of the oceanic crust during the Early Neoproterozoic period.
基金financially supported by the National Natural Science Foundation of China(Nos.41173065,41572205)the Geological Survey of China(Grant no.DD20160345)Ministry of Science and Technology(No.2012FY120100)
文摘This work presents zircon U–Pb age and wholerock geochemical data for the volcanic rocks from the Lakang Formation in the southeastern Tethyan Himalaya and represents the initial activity of the Kerguelen mantle plume. SHRIMP U–Pb dating of zircons from the volcanic rocks yielded a ^(206) Pb/^(238) U age of 147 ± 2 Ma that reflects the time of Late Jurassic magmatism. Whole rock analyses of major and trace elements show that the volcanic rocks are characterized by high content of Ti O_2(2.62 wt%–4.25 wt%) and P_2O_5(0.38 wt%–0.68 wt%), highly fractionated in LREE/HREE [(La/Yb)N= 5.35–8.31] with no obvious anomaly of Eu, and HFSE enrichment with no obvious anomaly of Nb and Ta, which are similar to those of ocean island basalts and tholeiitic basaltic andesites indicating a mantle plume origin. The Kerguelen mantle plume produced a massive amount of magmatic rocks from Early Cretaceous to the present, which widely dispersed from their original localities of emplacement due to the changing motions of the Antarctic, Australian, and Indian plates. However, our new geochronological and geochemical results indicate that the Kerguelen mantle plume started from the Late Jurassic. Furthermore, we suggest that the Kerguelen mantle plume may played a significant role in the breakup of eastern Gondwanaland according to the available geochronological, geochemical and paleomagnetic data.
基金supported by the National Natural Science Foundation of China(41472304)the MOST(2012CB822002)+1 种基金the National Science and Technology Major Project of the Ministry of Science and Technology of China(2016ZX05026-004-001)the Natural Science Foundation of Jilin Province(20170101001JC)
文摘A gas field consisting of volcanic reservoir rocks was discovered in the block-T units of the Xihu Sag,East China Sea Basin.The lithology of the volcanic rocks is dominated by tuff and reworked tuff.The lithofacies are dominated by base surge deposits of explosive facies.As the architecture model of volcanic facies is still uncertain,it has restricted the exploration and development of mineral resources in this area.Using core and cuttings data,the lithology,lithofacies,geochemistry as well as grain size characteristics of volcanic rocks were analyzed.Based on these analyses,the volcanic rocks in the well section are divided into three eruptive stages.The transport direction of each volcanic eruption is analyzed using crystal fragment size analysis.The facies architecture of the block-T units was established based on the reconstruction results of paleo-geomorphology.The results show that the drilling reveals proximal facies(PF)and distal facies(DF)of the volcanic edifices.However,the crater-near crater facies(CNCF)are not revealed.Compared with the reservoirs of the Songliao Basin,it is shown that the volcanic rocks in the Xihu Sag have good exploration potential;a favorable target area is the CNCF near the contemporaneous fault.
基金Project supported bythe Chinese National Ministry of Science and Technology (35 ,2000) the Chinese Ministry of Land andResources (200413000024 ,2000010403)
文摘The high-Mg volcanic rocks of the Yixian Formation in the Sihetun area have the obvious characteristics of mantie-derived lava in rare earth, trace element characteristics with high Mg # (62 - 70) and high content of compatible elements. In the meantime, the volcanic rocks also have the obvious characteristics of Crust-source material in rare earth, trace element characteristics with high ∑ REE ( 158.78 × 10^-6 - 359.66 × 10^-6 ), high (La/Yb) N ( 14.61 - 29.60), high La/Nb(2.37 - 7.52) and high Ba/Nb (67.58- 205.96), obvious positive anomaly of Pb and negative anomaly of Nb, Ta in trace element spider-gram. In Sr-Nd-Pb isotope the (^87Sr/^86Sr)i ratio is higher than 0.706 and the εNd( t ) ratio is from - 3.4 to - 13, both reflect enriched Mantle characteristics. The characteristics above of the volcanic rocks combined with the content of Sr, Ba, Y, Yb and the ratio of Sr/Y show that the volcanic rocks have the property of the Sanukite rocks in Setouchi Japan beside subduction zone, and illuminate that the Sanukite rocks can be formed not only in island-arc near subduction zone but also in intro-plate. The analysis indicates that the high-Mg volcanic rocks in the Sihetun area result from the collective function of mantle-derived lava and crust-source materials. The result illuminates that the West Liaoning region is very special in tectonic geochemical background in Cretaceous in East China, and is an ideal region for us to further study the characteristics of magmatic activity as well as the process of Crust-Mantle interaction in Eastern China.
文摘The authors studied zircon LA-ICP-MS U-Pb dating,the zircon Hf isotope and geochemistry of acidic volcanic rocks in Baiyingaolao Formation of Keyouzhongqi area,Inner Mongolia,and discussed the chronology,source region and tectonic setting of the volcanic rocks in the studied area. The clear oscillatory zoning of zircons indicates a typical magmatic origin,and the results of dating show that the volcanic rocks of Baiyingaolao Formation were formed in Early Cretaceous( 121. 5 ± 1. 0 Ma). The features of major and trace elements show that the rocks are alkali-rich,poor in calcium and magnesium with enrichment in LILEs like Th,U,K and Gd and depletion in HFSEs,e. g. Nb,Ta,Sr and Ti. The fact implies that they were the products of partial melting of the crust. εHf( t) =( +6.30--+9.06) and TDM2= 600--835 Ma,suggest the magma originated from partial melting of the young crust. Combined with the evolution of regional tectonic structure,the authors conclude that the acidic volcanic rocks of Baiyingaolao Formation may be formed under the extensional environment related to the subduction of Paleo-Pacific Plate.
基金Supported by the National Major Science and Technology Project(2016ZX05007004)PetroChina Southwest Oil&Gas Field Branch Company Science and Technology Project(2019ZD01)。
文摘Based on outcrop, drilling, logging, geochemical analysis and seismic data, the karst landform and distribution of Permian volcanic rocks at the end of the sedimentary period of the Maokou Formation in the western Sichuan Basin are examined, and their petroleum geological significance is discussed. Affected by normal faults formed in the early magmatic activities and extension tectonic background in the late sedimentary period of the Maokou Formation, a local karst shallow depression under the background of karst slope came up in the Jianyang area of the western Sichuan Basin, where the residual thickness of the Maokou Formation was thinner. Basic volcanic rocks like pyroclastic rock of eruptive facies, basalt of overflow facies, diabase porphyrite of intrusive facies and sedimentary tuff of volcanic sedimentary facies were formed after karstification. However, under the effects of faulting and karst paleogeomorphology, the volcanic rocks in different areas had different accumulation features. In the Jianyang area, with long eruption time, the volcanic rocks were thick and complex in lithology, and accumulated in the karst depressions. In the Zhongjiang-Santai area located in the karst slope, there’s no fault developed, only thin layers of basalt and sedimentary tuff turned up. The karst landform controls the build-up of thick explosive facies volcanic rocks and also the development of karst reservoirs in the Maokou Formation, and the western Sichuan area has oil and gas exploration potential in volcanic rocks and the Maokou Formation.
基金supported by the Deep Resources Exploration and Mining Project(Grant No.2019YFC0605202)China Geological Survey Project(Grant Nos.DD20221684,DD20221795,DD20201173)。
文摘The Nanyuan Formation contains information related to the Mesozoic tectonic transformation.In this study,three representative profiles were surveyed from the Nanyuan Formation,and multiple analyses were conducted.Zircon U-Pb dating yielded their ages as approximately 158–146 Ma.The volcanic rocks are enriched in Rb,Th,U,K,and Pb and depleted in Nb,Ta,P,and Ti,implying their affinity for I-type granites.TheεNd(t)values(-8.3 to-6.0),^(87)Sr/^(86)Sr)i values(0.7077–0.7094)of the volcanic rock,andεHf(t)values(-8.71 to 0.12)of the Mesozoic zircons suggest that the Nanyuan Formation magma originated in the lower crust with the involvement of depleted mantle materials.The parent rocks of the rhyolitic and dacitic volcanic rocks formed by partial melting of basement rocks in South China and the andesitic volcanic rocks were derived from partial melting of the metasomatites generated by slab-mantle interaction.The fractional crystallization also played an important role in later stage.Discrimination diagrams of the volcanic rocks indicated that they formed in a volcanic arc environment.Combined with previous data,the Nanyuan Formation recorded subduction of the Paleo-Pacific Plate before regional tectonic transformation.The compressive stress field endured until the end of the Late Jurassic.
基金supported by the National Natural Science Foundation of China (Grant No. 41702129)Chongqing Research Program of Basic Research and Frontier Technology (Grant No. cstc2017jcyjAX0448)+3 种基金Open Fund of Key Laboratory of Sedimentary Basin and Oil and Gas Resources, Ministry of Land and Resources (Chengdu Center, CGS) (Grant No. CDCGS2018003)State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS) (Grant No. 173115)the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201800115)Fundamental Research Funds for the Central Universities (Grant No. 106112017CDJXY240001)
文摘The Permian Chert Event is of great significance to understanding the geological evolution of the entire Permian; however,the origin of widespread chert formation is debated. We report new geochemical data from deep-marine siliceous rocks of the upper Permian Da-long Formation, Lower Yangtze region, southeastern China. Their geochemical results show that these thin-bedded siliceous rocks have a clear biologic origin, with rare to no evidence of hydrothermal influence. The values of Al/(Al + Fe + Mn) and Eu/Eu~* are 0.60-0.84(mean = 0.72) and 0.45-1.08(mean = 0.77), respectively, and Mn/Ti ratios are relatively low(mean = 0.72). The correlations of LaN/CeN, LaN/YbN, and Fe203/Ti02 with Al_2 O_3/(Al_2 O_3 + Fe_2 O_3), along with the Ce anomaly, indicate that the Da-long siliceous rocks were deposited at a transitional zone between a continental margin and the open ocean; i.e., relatively close to terrestrial sediment input and far from hydrothermal activity. The accumulation of chert is related to its unique paleogeographic location in an equatorial setting with many submarine paleo-highlands.Intense upwelling and frequent local volcanism are the main factors that promoted the development of siliceous rocks in the studied area. Ocean acidification triggered by large-scale volcanism(Large Igneous Province) during the late Permian led to extensive silica precipitation and preservation.
文摘The characteristics of rare earth elements in the Devonian and Carboniferous volcanic rocks were studied in the north Altay. And the mechanism of formation of volcanic rocks were discussed by using the rare earth elements. The correlativity of rare earth elements and major elements shows that the fractional crystallization is undistinguishable during the formation of Devonian and Carboniferous volcanic rocks, and the mechanism of formation of volcanic rocks may be the partial melting. The further study of the relationship of manifold rare earth elements shows that the mechanism of formation of Devonian and Carboniferous volcanic rocks in the north Altay is the partial melting. And the result also shows that the rare earth elements in the Devonian and Carboniferous volcanic rocks inherited the characteristics of those in its source materiels.
文摘The Lower Cretaceous Jiufotang Formation in western Liaoning is the most important fossil production horizon of the Jehol Biota, which is widely distributed in the Mesozoic basins of western Liaoning. Due to the influence of historical data, previous scholars believed that there was no volcanic activity in the Jiufotang Formation in western Liaoning. In a field investigation in western Liaoning, the authors discovered basalt and andesite in the Hujiayingzi bed. In addition, a conformable boundary was found between the Yixian and the Jiufotang formations. It indicates that both the Jiufotang Formation and the Yixian Formation are strata containing volcanic-sedimentary rocks, only differing in strength of volcanic activity.