期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Arm Voltage Balancing Control of Modular Multilevel Resonant Converter 被引量:7
1
作者 Jianjia Zhang Shuai Shao +2 位作者 Yucen Li Junming Zhang Kuang Sheng 《CES Transactions on Electrical Machines and Systems》 CSCD 2020年第4期303-308,共6页
Modular multilevel resonant converter is an promising candidate for high voltage applications since it has advantageous features,such as high efficiency,high voltage capability and easy fault-tolerant operation.Howeve... Modular multilevel resonant converter is an promising candidate for high voltage applications since it has advantageous features,such as high efficiency,high voltage capability and easy fault-tolerant operation.However,the inequality of arm inductance in practice will lead to imbalance between the upper and lower arm voltages,which will induce large ripples in the circulating current and a dc bias on the voltage generated by modular circuits.To compensate for the voltage imbalance,effects of arm duty cycle changes on arm voltages are discussed.An arm voltage balancing control method is proposed:adjust arm duty cycle according to arm voltage deviation in every switching cycle.Simulation and experimental results are presented to validate the theoretical analysis and the proposed control method. 展开更多
关键词 modular multilevel resonant(MMR)converter arm voltage balancing duty cycle
下载PDF
Model Predictive Control for Cascaded H-Bridge PV Inverter with Capacitor Voltage Balance
2
作者 Xinwei Wei Wanyu Tao +4 位作者 Xunbo Fu Xiufeng Hua Zhi Zhang Xiaodan Zhao Chen Qin 《Journal of Electronic Research and Application》 2024年第2期79-85,共7页
We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc... We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc-ing control methods,the method proposed could make the PV strings of each submodule operate at their maximum power point by independent capacitor voltage control.Besides,the predicted and reference value of the grid-connected current was obtained according to the maximum power output of the maximum power point tracking.A cost function was con-structed to achieve the high-precision grid-connected control of the CHB inverter.Finally,the effectiveness of the proposed control method was verified through a semi-physical simulation platform with three submodules. 展开更多
关键词 Model predictive control(MPC) Photovoltaic system Cascaded H-bridge(CHB)inverter Capacitor voltage balance
下载PDF
Modulation and Voltage Balancing Control of Dual Five-level ANPC Inverter for Ship Electric Propulsion Systems
3
作者 Xiaohui Xu Xingchi Song +4 位作者 Kui Wang Nianzhou Liu Wenfeng Long Zedong Zheng Yongdong Li 《Chinese Journal of Electrical Engineering》 CSCD 2021年第4期78-92,共15页
Open-end winding motors are used extensively in ship electric propulsion systems,in which medium-voltage high-power inverters are a critical component.To increase the system voltage and power density,a dual five-level... Open-end winding motors are used extensively in ship electric propulsion systems,in which medium-voltage high-power inverters are a critical component.To increase the system voltage and power density,a dual five-level active neutral-point clamped(ANPC)inverter is proposed herein to drive medium-voltage open-end winding motors for ship electric propulsion.Each phase of this inverter comprises two five-level ANPC bridges and all the phases are powered by a common direct-current link.A hybrid modulation method is proposed to control this inverter.The series-connected switches in all the five-level ANPC bridges are operated at the fundamental frequency,and the other switches are controlled with a phase-shifted pulse-width modulation(PWM),which can achieve a natural balance between the neutral-point voltage and flying capacitor voltages in a carrier period.A closed-loop capacitor voltage balancing method based on adjusting the duty ratios of the PWM signals is proposed.The neutral-point voltage and flying capacitor voltages can be controlled independently and balanced without affecting the output phase voltage.Simulation and experimental results are presented to demonstrate the validity of this method. 展开更多
关键词 Multilevel inverter active neutral-point clamped(ANPC) capacitor voltage balance open-end winding motor drive
原文传递
Solid-state Circuit Breaker Based on Cascaded Normally-on SiC JFETs for Medium-voltage DC Distribution Networks
4
作者 Dong He Haohui Zhou +4 位作者 Zheng Lan Wei Wang Jinhui Zeng Xueping Yu Z.John Shen 《Protection and Control of Modern Power Systems》 SCIE EI 2024年第2期32-46,共15页
Solid-state circuit breakers(SSCBs)are critical components in the protection of medium-voltage DC distribution networks to facilitate arc-free,fast and reliable isolation of DC faults.However,limited by the capacity o... Solid-state circuit breakers(SSCBs)are critical components in the protection of medium-voltage DC distribution networks to facilitate arc-free,fast and reliable isolation of DC faults.However,limited by the capacity of a single semiconductor device,using semi-conductor-based SSCBs at high voltage is challenging.This study presents the details of a 1.5 kV,63 A medi-um-voltage SSCB,composed primarily of a solid-state switch based on three cascaded normally-on silicon car-bide(SiC)junction field-effect transistors(JFETs)and a low-cost programmable gate drive circuit.Dynamic and static voltage sharing among the cascaded SiC JFETs of the SSCB during fault isolation is realized using the pro-posed gate drive circuit.The selection conditions for the key parameters of the SSCB gate driver are also analyzed.Additionally,an improved pulse-width modulation cur-rent-limiting protection solution is proposed to identify the permanent overcurrent and transient inrush current associated with capacitive load startup in a DC distribu-tion network.Using the developed SSCB prototype and the fault test system,experimental results are obtained to validate the fault response performance of the SSCB.Index Terms—Solid-state circuit breaker,DC distribu-tion network,SiC JFET,voltage balancing,inrush current. 展开更多
关键词 Solid-state circuit breaker DC distribu-tion network SiC JFET voltage balancing inrush current
原文传递
Power and Voltage Control Based on DC Offset Injection for Bipolar Low-voltage DC Distribution System
5
作者 Xinyi Kong Jianwen Zhang +4 位作者 Jianqiao Zhou Jiajie Zang Jiacheng Wang Gang Shi Xu Cai 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第5期1529-1539,共11页
The bipolar low-voltage DC(LVDC) distribution system has become a prospective solution to better integration of renewables and improvement of system efficiency and reliability. However, it also faces the challenge of ... The bipolar low-voltage DC(LVDC) distribution system has become a prospective solution to better integration of renewables and improvement of system efficiency and reliability. However, it also faces the challenge of power and voltage imbalance between two poles. To solve this problem, an interface converter with bipolar asymmetrical operating capabilities is applied in this paper. The steady-state models of the bipolar LVDC distribution system equipped with this interface converter in the gridconnected mode and off-grid mode are analyzed. A control scheme based on DC offset injection at the secondary side of the interface converter is proposed, enabling the bipolar LVDC distribution system to realize the unbalanced power transfer between two poles in the grid-connected mode and maintain the inherentpole voltage balance in the off-grid mode. Furthermore, this paper also proposes a primary-side DC offset injection control scheme according to the analysis of the magnetic circuit model, which can eliminate the DC bias flux caused by the secondaryside DC offset. Thereby, the potential core magnetic saturation and overcurrent issues can be prevented, ensuring the safety of the interface converter and distribution system. Detailed simulations based on the proposed control scheme are conducted to validate the function of power and voltage balance under the operation conditions of different DC loads. 展开更多
关键词 Bipolar low-voltage DC distribution system interface converter DC offset injection unbalanced power voltage balance
原文传递
Limits of Uneven Battery Power in Modular Multilevel Converter-based Battery Energy Storage Systems
6
作者 Yao Pan Xiaofeng Sun +2 位作者 Wei Zhao Xin Li Yao Cai 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第2期686-695,共10页
For modular multilevel converter-based battery energy storage systems (MMC-BESS), uneven power among batteries of SMs will be deduced by battery aging, battery fault, etc., which will degrade performance and even lead... For modular multilevel converter-based battery energy storage systems (MMC-BESS), uneven power among batteries of SMs will be deduced by battery aging, battery fault, etc., which will degrade performance and even lead to system failure. For maintaining the balance of capacitor voltage, this paper analyzes the limits of the uneven power of batteries, which are presented as the current limits in this paper. According to analysis, an analytical method is proposed that only the dc and fundamental frequency components of the arm current are used to calculate current limits. With the current limits it is able to evaluate the reasonability of power distribution among batteries. Meanwhile, increase of fundamental frequency component will enhance the current limits, and the dc component determines the size relationship between the absolute values of the upper and lower current limits. Finally, simulation model and experiment prototype are built for verifying the theoretical analysis and current limits calculation method, and satisfactory results are provided. 展开更多
关键词 Arm current balance of capacitor voltage current limits MMC-BESS uneven power
原文传递
Overview on Submodule Topologies,Modeling,Modulation,Control Schemes,Fault Diagnosis,and Tolerant Control Strategies of Modular Multilevel Converters 被引量:15
7
作者 Fujin Deng Yongqing Lu +3 位作者 Chengkai Liu Qian Heng Qiang Yu Jifeng Zhao 《Chinese Journal of Electrical Engineering》 CSCD 2020年第1期1-21,共21页
In the present scenario,modular multilevel converters(MMCs)are considered to be one of the most promising and effective topologies in the family of high-power converters because of their modular design and good scalab... In the present scenario,modular multilevel converters(MMCs)are considered to be one of the most promising and effective topologies in the family of high-power converters because of their modular design and good scalability;MMCs are extensively used in high-voltage and high-power applications.Based on their unique advantages,MMCs have attracted increasing attention from academic circles over the past years.Several studies have focused on different aspects of MMCs,including submodule topologies,modeling schemes,modulation strategies,control schemes for voltage balancing and circulating currents,fault diagnoses,and fault-tolerant control strategies.To summarize the current research status of MMCs,all the aforementioned research issues with representative research approaches,results and characteristics are systematically overviewed.In the final section,the current research status of MMCs and their future trends are emphasized. 展开更多
关键词 Capacitor voltage balancing control circulating current control fault diagnosis fault tolerant control modular multilevel converters modulating strategy modeling scheme submodule topology
原文传递
Evaluation of Feasible Interlinking Converters in a Bipolar Hybrid Microgrid 被引量:1
8
作者 Parviz Najafi Abbas Houshmand Viki Mahdi Shahparasti 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2020年第2期305-314,共10页
A bipolar hybrid microgrid is a new topology which benefits from the advantages of both alternating current(AC)and direct current(DC)microgrids.Interlinking AC/DC converter is the key of this topology which has the fo... A bipolar hybrid microgrid is a new topology which benefits from the advantages of both alternating current(AC)and direct current(DC)microgrids.Interlinking AC/DC converter is the key of this topology which has the following characteristics:being able to provide two equal pole voltages in DC side;complying with the standards of current quality at AC side;being able to control active and reactive power independently in AC side,and transmitting bidirectional power.In this paper,two categories of power converters including single-stage and two-stage converters are proposed for this topology.A new cost-effective control strategy is added to the control of general grid-connected converter for each interlinking converter,and the control of autonomous DC-link pole voltage for both candidates is achieved.Detailed simulations based on the designed control strategies are conducted to validate the function of control strategies under the operation conditions of different DC sides.The performances of two selected interlinking converters with balanced and unbalanced DC loads are analyzed.Suggested power quality of microgrid and total harmonic distortion(THD)analysis are demonstrated in grid-tied and islanded modes.Eventually,semiconductor power loss simulations based on a closed-loop thermal network simulation are conducted.Thereby,the mutual effects of power loss and initial junction temperature are investigated. 展开更多
关键词 Bipolar hybrid microgrid interlinking converter DC-link voltage balancing power loss distribution
原文传递
Plug-in Gate-loop Compensators for Series-connected IGBT Drivers in a Solid-state Fault Current Limiter
9
作者 Rui Wang Yu Chen +2 位作者 Jing Chen Lin Liang Li Peng 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2022年第1期165-174,共10页
A solid-state fault current limiter(SSFCL)is the key protective equipment in a direct current distribution network.In order to meet the high voltage requirements and reduce costs,implementing a SSFCL based on series-c... A solid-state fault current limiter(SSFCL)is the key protective equipment in a direct current distribution network.In order to meet the high voltage requirements and reduce costs,implementing a SSFCL based on series-connected insulated gate bipolar transistors(IGBTs)is a promising approach.However,voltage unbalancing of IGBTs would be introduced if the gateloops of the IGBTs are non-identical.In this paper,a plug-in gate-loop compensator with discrete gate voltage feedback and pulsewidth current compensation is proposed.The main merits are:1)with the plug-in structure,the extra current sources only provide small power to fine-tune the gate-loop without affecting the functions provided by the commercial IGBT gate driver;2)the gate-emitter voltages of IGBTs are compared with the preset thresholds to obtain control criterion,and the pulsewidths of the current sources are controlled for gate-loop compensation,thus both analog-digital and digital-analog converters are avoided;3)the control law is easy to implement in FPGA,and is robust to voltage variation of power-loops.With the proposed compensator,the voltage unbalancing is alleviated immediately at the present switching cycle,and further eliminated cycle-by-cycle during the current limitation process.Experimental results verify the feasibility of the proposed compensator. 展开更多
关键词 Current limitation direct current distribution network insulated gate bipolar transistors(IGBTs) voltage balancing
原文传递
Mutual Interactions and Stability Analysis of Bipolar DC Microgrids 被引量:1
10
作者 Saman Dadjo Tavakoli Peng Zhang +1 位作者 Xiaonan Lu Mohsen Hamzeh 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2019年第4期444-453,共10页
This paper presents an Multi-Input Multi-Output(MIMO)analysis to investigate the mutual interactions and small-signal stability of bipolar-type dc microgrids.Since bipolar dc microgrid is replete with power-electronic... This paper presents an Multi-Input Multi-Output(MIMO)analysis to investigate the mutual interactions and small-signal stability of bipolar-type dc microgrids.Since bipolar dc microgrid is replete with power-electronic converters,its dynamics can not be understood unless the interactions among control systems of converters are properly investigated.To tackle the challenge,each converter in microgrid is modeled via an MIMO transfer matrix.Then,the MIMO models are combined together based on the interactions among the control systems of source and load converters.From this integrative MIMO model,the mutual interactions between various input-output pairs are quantified using Gershgorin Band theorem.Also,Singular Value Decomposition(SVD)analysis is carried out to estimate the frequency of unstable poles.Test results not only successfully validate the effectiveness of the MIMO method but also show that the control system of voltage balancer has a major impact on the overall stability of bipolar dc microgrid,making it a suitable location for applying damping systems. 展开更多
关键词 Bipolar dc microgrid Gershgorin Band MIMO analysis small-signal stability singular value decomposition voltage balancer
原文传递
Mixed Dead-time Effect Suppression Strategy for Modular Multilevel Converters
11
作者 Zhi Geng Minxiao Han 《CSEE Journal of Power and Energy Systems》 SCIE EI 2024年第3期1075-1084,共10页
Dead time is necessary for the coupled power switches to prevent shoot-through,especially in the modular multilevel converters(MMCs)with a large number of power switches.This paper proposes a dead-time effect suppress... Dead time is necessary for the coupled power switches to prevent shoot-through,especially in the modular multilevel converters(MMCs)with a large number of power switches.This paper proposes a dead-time effect suppression strategy for MMCs with nearest level modulation.The operational principles of MMCs are first analyzed.According to the operational features of MMCs,the method that removes a switching signal from the coupled switches and the reduced switching frequency voltage balancing algorithms(RSFVBAs)are mixed in the proposed method.In the intervals that are furthest away from the zerocrossing points(ZCP)of arm currents,the single switching signal method can completely eliminate the dead-time effect(DTE).Alternatively,the DTE is suppressed by the RSFVBA in intervals that are close to the ZCP.By the combination of the two methods,the dependence of the DTE suppression method on currents is reduced and the influences of ZCP are also released without degrading the normal operation performance of MMCs.Moreover,the output performance of MMCs is improved and the voltage stress on the arm inductor dramatically decreases.Finally,the validation of the method is verified by the simulation results with the professional tool Matlab/Simulink. 展开更多
关键词 Dead-time effect modular multilevel converters switching frequency voltage balancing algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部