The voltage drop appearing at Mg anode-electrolyte interface is a critical issue for the battery power and energy density of aqueous primary Mg-air batteries.The respective voltage loss is typically assigned to the de...The voltage drop appearing at Mg anode-electrolyte interface is a critical issue for the battery power and energy density of aqueous primary Mg-air batteries.The respective voltage loss is typically assigned to the deposits layer forming on the anode surface during discharge.In this work,we experimentally and computationally investigate the critical factors affecting the voltage drop at Mg anode towards a deeper understanding of the contribution of deposit and its growth.A two-dimensional(2D)mathematical model is proposed to compute the voltage drop of Mg-0.15Ca wt.%alloy(Mg-0.15Ca)by means of a semi-empirical formulas and experiments-based modification model,considering the effect of discharge current density,the negative difference effect(NDE)and surface deposits layer itself.This model is utilized to simulate the discharge potential of the anode at predefined experimental current densities.The computed voltage drop(half-cell voltage)is in good agreement with the experimental value.The applicability of the mathematical model is successfully validated on the second material(namely high-purity Mg).展开更多
When a renewable energy station(RES)connects to the rectifier station(RS)of a modular multilevel converterbased high-voltage direct current(MMC-HVDC)system,the voltage at the point of common coupling(PCC)is determined...When a renewable energy station(RES)connects to the rectifier station(RS)of a modular multilevel converterbased high-voltage direct current(MMC-HVDC)system,the voltage at the point of common coupling(PCC)is determined by RS control methods.For example,RS control may become saturated under fault,and causes the RS to change from an equivalent voltage source to an equivalent current source,making fault analysis more complicated.In addition,the grid code of the fault ride-through(FRT)requires the RES to output current according to its terminal voltage.This changes the fault point voltage and leads to RES voltage regulation and current redistribution,resulting in fault response interactions.To address these issues,this study describes how an MMC-integrated system has five operation modes and three common characteristics under the duration of the fault.The study also reveals several instances of RS performance degradation such as AC voltage loop saturation,and shows that RS power reversal can be significantly improved.An enhanced AC FRT control method is proposed to achieve controllable PCC voltage and continuous power transmission by actively reducing the PCC voltage amplitude.The robustness of the method is theoretically proven under parameter variation and operation mode switching.Finally,the feasibility of the proposed method is verified through MATLAB/Simulink results.展开更多
Although the single-particle model enhanced with electrolyte dynamics(SPMe)is simplified from the pseudo-twodimensional(P2D)electrochemical model for lithium-ion batteries,it is difficult to solve the partial differen...Although the single-particle model enhanced with electrolyte dynamics(SPMe)is simplified from the pseudo-twodimensional(P2D)electrochemical model for lithium-ion batteries,it is difficult to solve the partial differential equations of solid–liquid phases in real-time applications.Moreover,working temperatures have a heavy impact on the battery behavior.Hence,a thermal-coupling SPMe is constructed.Herein,a lumped thermal model is established to estimate battery temperatures.The order of the SPMe model is reduced by using both transfer functions and truncation techniques and merged with Arrhenius equations for thermal effects.The polarization voltage drop is then modified through the use of test data because its original model is unreliable theoretically.Finally,the coupling-model parameters are extracted using genetic algorithms.Experimental results demonstrate that the proposed model produces average errors of about 42 mV under 15 constant current conditions and 15 mV under nine dynamic conditions,respectively.This new electrochemicalthermal coupling model is reliable and expected to be used for onboard applications.展开更多
The electrical energy produced must be consumed at the same time, hence the need to achieve a balance between supply and demand. Therefore, the production, transport, and distribution systems together constitute an el...The electrical energy produced must be consumed at the same time, hence the need to achieve a balance between supply and demand. Therefore, the production, transport, and distribution systems together constitute an electricity network. The distribution networks are designed to deliver energy to consumers. Unacceptable voltage drops are observed in the distribution networks of developing countries such as Burkina Faso. A study was carried out on the distribution network of the city of Bobo-Dioulasso in Burkina Faso. It allowed for experimentation with the “Megger MPQ1000” network analyzer to evaluate the quality of the voltage supplied to households. To this end, tests were carried out in a public distribution station and at a few subscribers in the Sarfalao district of the city of Bobo-Dioulasso. These tests were used to assess the percentage of voltage drops. These values, which are higher than 8% of the nominal voltage, are not regulatory. The load curves of the consumers in the district were also drawn. Indeed, the period of the high load is between 19:00 and 23:00 Local Time (LT), while the period of the medium and low load is between 00:00 and 18:00 LT.展开更多
Four kinds of Cu-based composites with different mass ratios of graphite and WS2 as lubricants were fabricated by hot-pressing method. Electrical sliding wear behaviors of the composites were investigated using a bloc...Four kinds of Cu-based composites with different mass ratios of graphite and WS2 as lubricants were fabricated by hot-pressing method. Electrical sliding wear behaviors of the composites were investigated using a block-on-ring tribometer rubbing against Cu-5%Ag alloy ring. The results demonstrated that 800 ~C was the optimum sintering temperature for Cu-graphite-WS2 dual-lubricant composites to obtain the best comprehensive properties of mechanical strength and lubrication performance. Contact voltage drops of the Cu-based composites increased with increasing the mass ratio of WS2 to graphite. The Cu-based composite with 20% graphite and 10% WS2 showed the best wear resistance due to the excellent synergetic lubricating effect of graphite and WS2. The reasonable addition of WS2 into the Cu-graphite composite can remarkably improve the wear resistance without much rise of electrical energy loss which provides a novel principle of designing suitable sliding electrical contact materials for industrial applications.展开更多
The electrical performance including breakdown voltage and turn-off speed of SOI-LIGBT is improved by incorporating a resistive field plate (RFP) and a p-MOSFET.The p-MOSFET is controlled by a signal detected from a p...The electrical performance including breakdown voltage and turn-off speed of SOI-LIGBT is improved by incorporating a resistive field plate (RFP) and a p-MOSFET.The p-MOSFET is controlled by a signal detected from a point of the RFP.During the turning-off of the IGBT,the p-MOSFET is turned on,which provides a channel for the excessive carriers to flow out of the drift region and prevents the carriers from being injected into the drift region.At the same time,the electric field affected by the RFP makes the excessive carriers flow through a wider region,which almost eliminates the second phase of the turning-off of the SOI-LIGBT caused by the substrate bias.Faster turn-off speed is achieved by above two factors.During the on state of the IGBT,the p-MOSFET is off,which leads to an on-state performance like normal one.At least,the increase of the breakdown voltage for 25% and the decrease of the turn-off time for 65% can be achieved by this structure as can be verified by the numerical simulation results.展开更多
IGBT with high switching speed is described based on the dynamic controlled anode- short,which incorpo- rates a normally- on,p- MOSFET controlled by the anode voltage indirectly.This device works just as normal when ...IGBT with high switching speed is described based on the dynamic controlled anode- short,which incorpo- rates a normally- on,p- MOSFET controlled by the anode voltage indirectly.This device works just as normal when it is in on- state since the channel of the p- MOSFET is pinched- off.During the course of turning off,the channel of the p- MOSFET will prevent the injection of m inorities and introduce an extra access for the carriers to flow to the anode directly,which m akes the IGBT reach its off- state in a shorter time.The simulation results prove that the new structure can reduce the turn- off time by m ore than75 % compared with the normal one under the same break- down voltage and on- state perform ance.Only two more resistors are needed when using this structure,and the re- quirement of the drive circuits is just the sam e as normal.展开更多
As the traditional graphite-based composites cannot meet the requirement of rapid developing modern industry, novel sliding electrical contact materials with high self-lubricating performance in multiple environments ...As the traditional graphite-based composites cannot meet the requirement of rapid developing modern industry, novel sliding electrical contact materials with high self-lubricating performance in multiple environments are eagerly required. Herein a copper-based composite with WS2 and graphite as solid lubricant are fabricated by powder metallurgy hot-pressed method. The friction and wear behaviors of the composites with and without current are investigated under the condition with sliding velocity of 10 m/s and normal load of 2.5N/cm 2 in both air and vacuum. Morphologies of the worn surfaces are observed by optical microscope and compositions of the lubricating films are analyzed by XPS. Surface profile curves and roughness of the worn surfaces are obtained by 2205 surface profiler. The results of wear tests show that the friction coefficient and wear volume loss of the composites with current are greater than that without current in both air and vacuum due to the adverse effects of electrical current which damaged the lubricating film partially and roughed the worn surfaces. XPS results demonstrate that the lubricating film formed in air is composed of oxides of Cu, WS2 , elemental S and graphite, while the lubricating film formed in vacuum is composed of Cu, WS2 and graphite. Because of the synergetic lubricating action of oxides of Cu, WS2 and graphite, the composites show low friction coefficient and wear volume loss in air condition. Owing to the fact that graphite loses its lubricity which makes WS2 become the only lubricant, severe adhesive and abrasive wear occur and result in a high value of wear rate in vacuum condition. The formation of the lubricating film on the contact interface between the brush and ring is one of the factors which can greatly affect the wear performance of the brushes. The low contact voltage drop of the composites in vacuum condition is attributed to the high content of Cu in the surface film. This study fabricated a kind of new sliding electrical contact self-lubricating composite with dual-lubricant which can work well in both air and vacuum environments and provides a comprehensive analysis on the lubrication mechanisms of the composite.展开更多
For the advantages of easy realization and rapidly intelligent response,the one-cycle control was applied in five-phase six-leg switching power amplifier for magnetic bearing.This paper improves the one-cycle control ...For the advantages of easy realization and rapidly intelligent response,the one-cycle control was applied in five-phase six-leg switching power amplifier for magnetic bearing.This paper improves the one-cycle control considering resistance voltage drop and derives its mathematical models.The improved algorithm is compared with the former one.The simulation and experimental results show that the improved algorithm can effectively reduce the output current ripple,achieve good tracking of the given current,improve the control accuracy,and verify the effectiveness and superiority of the method.展开更多
Purpose–The traction cable is paralleled with the existing traction network of electrified railway through transverse connecting line to form the scheme of long distance power supply for the traction network.This pap...Purpose–The traction cable is paralleled with the existing traction network of electrified railway through transverse connecting line to form the scheme of long distance power supply for the traction network.This paper aims to study the scheme composition and power supply distance(PSD)of the scheme.Design/methodology/approach–Based on the structure of parallel traction network(referred to as“cable traction network(CTN)”),the power supply modes(PSMs)are divided into cableþdirect PSM and cableþautotransformer(AT)PSM(including Japanese mode,French mode and new mode).Taking cableþJapanese AT PSM as an example,the scheme of long distance power supply for CTN under the PSMs of co-phase and out-of-phase power supply are designed.On the basis of establishing the equivalent circuit model and the chain circuit model of CTN,taking the train working voltage as the constraint condition,and based on the power flow calculation of multiple train loads,the calculation formula and process for determining the PSD of CTN are given.The impedance and PSD of CTN under the cableþAT PSM are simulated and analyzed,and a certain line is taken as an example to compare the scheme design.Findings–Results show that the equivalent impedance of CTN under the cableþAT PSM is smaller,and the PSD is about 2.5 times of that under the AT PSM,which can effectively increase the PSD and the flexibility of external power supply location.Originality/value–The research content can effectively improve the PSD of traction power supply system and has important reference value for the engineering application of the scheme.展开更多
A junction barrier Schottky (JBS) rectifier with an improved P-well on 4H-SiC is proposed to improve the VF-IR trade-off and the breakdown voltage. The reverse current density of the proposed JBS rectifier at 300 K ...A junction barrier Schottky (JBS) rectifier with an improved P-well on 4H-SiC is proposed to improve the VF-IR trade-off and the breakdown voltage. The reverse current density of the proposed JBS rectifier at 300 K and 800 V is about 3.3 × 10-s times that of the common JBS rectifier at no expense of the forward voltage drop. This is because the depletion layer thickness in the P-well region at the same reverse voltage is larger than in the P+ grid, resulting in a lower spreading current and tunneling current. As a result, the breakdown voltage of the proposed JBS rectifier is over 1.6 kV, that is about 0.8 times more than that of the common JBS rectifier due to the uniform electric field. Although the series resistance of the proposed JBS rectifier is a little larger than that of the common JBS rectifier, the figure of merit (FOM) of the proposed JBS rectifier is about 2.9 times that of the common JBS rectifier. Based on simulating the values of susceptibility of the two JBS rectifiers to electrostatic discharge (ESD) in the human body model (HBM) circuits, the failure energy of the proposed JBS rectifier increases 17% compared with that of the common JBS rectifier.展开更多
The thin emitter structure was introduced into reversely switched dynistor(RSD) to improve its turn-on characteristics. According to the analysis of turn-on condition, thin emitter structure is capable of reducing t...The thin emitter structure was introduced into reversely switched dynistor(RSD) to improve its turn-on characteristics. According to the analysis of turn-on condition, thin emitter structure is capable of reducing the extraction action for the triggering plasma layer P1 during turn-on process, and satisfying the requirement that triggering electric charge cannot be exhausted and therefore enables RSD to turn on uniformly. The on-state thin emitter RSD was equivalent to an asymmetric pin diode model. The simulation result shows that the forward voltage drop of RSD falls with the decrease of doping dose in p^+-emitter in a certain range, and when the doping concentration is extremely tow, the decrease of the width of p^+-emitter can obtain a tow forward voltage drop. Thin emitter RSD chips were made by sintering AI on n-Si. The test result shows that their turn-on process is uniform and the voltage drop is 7.5 V when the peak conversion current is 5 500 A.展开更多
In this paper,a new type of automatic transmitter(AT)is proposed to properly adjust the voltage of the train without installing additional equipment.The proposed tap-changing AT is expected to raise the voltage betwee...In this paper,a new type of automatic transmitter(AT)is proposed to properly adjust the voltage of the train without installing additional equipment.The proposed tap-changing AT is expected to raise the voltage between catenary and rail by regulating the turn-ratio between primary and secondary winding according to catenary voltage and verified its effects through the multi ports network analysis technique modeling of it.Through the simulation and analysis of the electric railway systems,it is shown that it can secure the load capacity and solve the large voltage drop problem by raising the voltage across railway vehicles back to the normal voltage level.展开更多
In this study, the authors aim to develop the interconnection inverter ofPV (photovoltaic generation) system with FRT (fault ride thorough) function and islanding detection function, and analyze the interaction be...In this study, the authors aim to develop the interconnection inverter ofPV (photovoltaic generation) system with FRT (fault ride thorough) function and islanding detection function, and analyze the interaction between the both functions during the momentary voltage drop by using an analytical model of distribution system interconnected plural PV systems. Moreover, the authors propose a cooperated control method of the inverters ~vith the islanding detection function and FRT function, and carry out a numerical calculation in order to verify the validity of the proposed method.展开更多
In order to solve the problems of complexity of control systems and the limited power supply of traditional fuelpowered and battery-driven transporters operating in mountainous orchards,a sliding contact line-powered ...In order to solve the problems of complexity of control systems and the limited power supply of traditional fuelpowered and battery-driven transporters operating in mountainous orchards,a sliding contact line-powered track transporter was designed and manufactured based on theoretical calculations.Key components of the transporter were developed such as a PLC-based(programmable logic controller)control system,a sliding contact power supply,and transmission system,and a position limit device.The functions and performance of designed transporter were tested.The test results showed that the transporter exhibited a high stability of operation with an average operation velocity of 0.70 m/s,the maximum working slope of 48°,the maximum load of 400 kg,and the maximum remote control distance reaching 1482 m.When the power supply circuit of sliding contact line was 108.8 m in length,the maximum voltage drop was 2.4 V,and the maximum power loss was 174.72 W,which were close to the theoretical calculation values.With a single power supply cabinet,the transporter can operate normally for a maximum track distance of 175.69 m.All the technical indicators of the transporter met the design requirements,and the above-mentioned problems such as complexity of the control system and limited energy supply of the traditional mountain orchard transporter were well solved.This study can provide reference for the design and optimization of mountain orchard transporter.展开更多
Silver matrix composite brushes were fabricated by means of powder metallurgy, which included pressing at 300 MPa and then sintering for 1 h in pure H2 protective atmosphere at 700 ℃ and repressing at 500 MPa. Four k...Silver matrix composite brushes were fabricated by means of powder metallurgy, which included pressing at 300 MPa and then sintering for 1 h in pure H2 protective atmosphere at 700 ℃ and repressing at 500 MPa. Four kinds composites with different compositions were produced, and the mechanical properties and electrical wear performance were investigated. The results showed that the composite added with carbon nanotubes had a higher hardness and strength, a lower contact voltage drop and an excellent anti-wear property in electrical sliding wear, because of the reinforcement ability of carbon nanotubes. Adding graphite to the composite also decreased the wear loss and contact voltage drop, because graphite had an electrical current conducting ability which not only made the current pass the lubricating films easily but also eliminated and reduced the arc and spark effectively.展开更多
In this paper Cu-WS2-graphite-WS2nanotube composites were fabricated by powder metallurgy hot pressing method.The effect of current polarity on the wear rates and contact voltage drops of the composites were investiga...In this paper Cu-WS2-graphite-WS2nanotube composites were fabricated by powder metallurgy hot pressing method.The effect of current polarity on the wear rates and contact voltage drops of the composites were investigated using a brush-on-slip ring tribometer rubbing against Cu-5 wt.%Ag alloy ring in air and vacuum,respectively.The worn surfaces of the composites were analyzed by scanning electron microscopy(SEM)and X-ray photoelectron spectroscopy(XPS).Surface profile curves of the worn tracks were measured using the surface profiler.The results demonstrated that the current polarity has a significant effect on the wear rates and contact voltage drops of the composites in both air and vacuum conditions.Positive brush possesses a higher wear rate compared with the negative brush in the air atmosphere since the electrical field direction activates oxidation at the positive brush surface while inhibits oxidation at the negative brush surface.Except for the regular wear losses,the combined effect of molten metal bridge erosion and arc erosion cause the positive brush to lose extra material and the negative brush to gain extra material,so the positive brush shows a higher wear rate in the vacuum condition.The contact voltage drop of the positive brush is lower than that of the negative brush in the air atmosphere,but contrarily,the positive brush shows a higher contact voltage drop in the vacuum condition.展开更多
Sliding friction and wear experiments using Cu-La2O3-graphite composites against Cu-5 wt.%Ag alloy ring were conducted at a constant sliding speed of 10 m/s, a current density of 10 A/cm2 and a load of 2.5 N/cm2. Thes...Sliding friction and wear experiments using Cu-La2O3-graphite composites against Cu-5 wt.%Ag alloy ring were conducted at a constant sliding speed of 10 m/s, a current density of 10 A/cm2 and a load of 2.5 N/cm2. These composites with different La2O3 and graphite contents were fabricated by hot-pressing. Physical and mechanical properties of the composites were examined. Morphologies of the worn surface of composites were observed using optical microscopy. X-ray photoelectron spectroscopy spectra were used to study compositions of the lubricating film. The results showed that with the increasing addition of La2O3, hardness, flexural strength and electrical resistivity increased, but the relative density dropped. The friction coefficient increased with the increasing addition of La2O3. Composite containing 3 vol.% of La2O3 and 37 vol.% of graphite showed the best wear resistance. The main wear mechanisms of composites were abrasive wear, oxidative wear and adhesive wear.展开更多
A new lateral insulated-gate bipolar transistor (LIGBT) structure on SOI substrate, called an n-region controlled anode LIGBT (NCA-LIGBT), is proposed and discussed. The n-region controlled anode concept results i...A new lateral insulated-gate bipolar transistor (LIGBT) structure on SOI substrate, called an n-region controlled anode LIGBT (NCA-LIGBT), is proposed and discussed. The n-region controlled anode concept results in fast switch speeds, efficient area usage and effective suppression NDR in forward I-V characteristics. Simulation results of the key parameters (n-region doping concentration, length, thickness and p-base doping concentration) show that the NCA-LIGBT has a good tradeoff between turn-off time and on-state voltage drop. The proposed LIGBT is a novel device for power ICs such as PDP scan driver ICs.展开更多
An accumulation channel trench gate insulated gate bipolar transistor (ACT-IGBT) is proposed. The simu- lation results show that for a blocking capability of 1200 V, the on-state voltage drops of ACT-IGBT are 1.5 an...An accumulation channel trench gate insulated gate bipolar transistor (ACT-IGBT) is proposed. The simu- lation results show that for a blocking capability of 1200 V, the on-state voltage drops of ACT-IGBT are 1.5 and 2 V at a temperature of 300 and 400 K, respectively, at a collector current density of 100 A/cm2. In contrast, the on-state voltage drops of a conventional trench gate IGBT (CT-IGBT) are 1.7 and 2.4 V at a temperature of 300 and 400 K, respectively. Compared to the CT-IGBT, the ACT-IGBT has a lower on-state voltage drop and a larger forward bias safe operating area. Meanwhile, the forward blocking characteristics and turn-off performance of the ACT-IGBT are also analyzed.展开更多
基金the China Scholarship Council for the award of fellowship and funding No.201908510177 and No.202106050030funded by dtec.bw-Digitalization and Technology Research Center of the Bundeswehr which project DMF+1 种基金The AMABML project founded by the Zentrum für Hochleistungsmaterialien(ZHM)DEZAIN project for financial support via grant from GIF,the German-Israeli Foundation for Scientific Research and Development。
文摘The voltage drop appearing at Mg anode-electrolyte interface is a critical issue for the battery power and energy density of aqueous primary Mg-air batteries.The respective voltage loss is typically assigned to the deposits layer forming on the anode surface during discharge.In this work,we experimentally and computationally investigate the critical factors affecting the voltage drop at Mg anode towards a deeper understanding of the contribution of deposit and its growth.A two-dimensional(2D)mathematical model is proposed to compute the voltage drop of Mg-0.15Ca wt.%alloy(Mg-0.15Ca)by means of a semi-empirical formulas and experiments-based modification model,considering the effect of discharge current density,the negative difference effect(NDE)and surface deposits layer itself.This model is utilized to simulate the discharge potential of the anode at predefined experimental current densities.The computed voltage drop(half-cell voltage)is in good agreement with the experimental value.The applicability of the mathematical model is successfully validated on the second material(namely high-purity Mg).
基金supported in part by the National Key Research and Development Program of China(No.2020YFF0305800)State Grid Science Technology Project(No.520201210025)。
文摘When a renewable energy station(RES)connects to the rectifier station(RS)of a modular multilevel converterbased high-voltage direct current(MMC-HVDC)system,the voltage at the point of common coupling(PCC)is determined by RS control methods.For example,RS control may become saturated under fault,and causes the RS to change from an equivalent voltage source to an equivalent current source,making fault analysis more complicated.In addition,the grid code of the fault ride-through(FRT)requires the RES to output current according to its terminal voltage.This changes the fault point voltage and leads to RES voltage regulation and current redistribution,resulting in fault response interactions.To address these issues,this study describes how an MMC-integrated system has five operation modes and three common characteristics under the duration of the fault.The study also reveals several instances of RS performance degradation such as AC voltage loop saturation,and shows that RS power reversal can be significantly improved.An enhanced AC FRT control method is proposed to achieve controllable PCC voltage and continuous power transmission by actively reducing the PCC voltage amplitude.The robustness of the method is theoretically proven under parameter variation and operation mode switching.Finally,the feasibility of the proposed method is verified through MATLAB/Simulink results.
基金the financial support from the National Key Research and Development Program of China(Grant No.2021YFF0601101)。
文摘Although the single-particle model enhanced with electrolyte dynamics(SPMe)is simplified from the pseudo-twodimensional(P2D)electrochemical model for lithium-ion batteries,it is difficult to solve the partial differential equations of solid–liquid phases in real-time applications.Moreover,working temperatures have a heavy impact on the battery behavior.Hence,a thermal-coupling SPMe is constructed.Herein,a lumped thermal model is established to estimate battery temperatures.The order of the SPMe model is reduced by using both transfer functions and truncation techniques and merged with Arrhenius equations for thermal effects.The polarization voltage drop is then modified through the use of test data because its original model is unreliable theoretically.Finally,the coupling-model parameters are extracted using genetic algorithms.Experimental results demonstrate that the proposed model produces average errors of about 42 mV under 15 constant current conditions and 15 mV under nine dynamic conditions,respectively.This new electrochemicalthermal coupling model is reliable and expected to be used for onboard applications.
文摘The electrical energy produced must be consumed at the same time, hence the need to achieve a balance between supply and demand. Therefore, the production, transport, and distribution systems together constitute an electricity network. The distribution networks are designed to deliver energy to consumers. Unacceptable voltage drops are observed in the distribution networks of developing countries such as Burkina Faso. A study was carried out on the distribution network of the city of Bobo-Dioulasso in Burkina Faso. It allowed for experimentation with the “Megger MPQ1000” network analyzer to evaluate the quality of the voltage supplied to households. To this end, tests were carried out in a public distribution station and at a few subscribers in the Sarfalao district of the city of Bobo-Dioulasso. These tests were used to assess the percentage of voltage drops. These values, which are higher than 8% of the nominal voltage, are not regulatory. The load curves of the consumers in the district were also drawn. Indeed, the period of the high load is between 19:00 and 23:00 Local Time (LT), while the period of the medium and low load is between 00:00 and 18:00 LT.
基金Projects(9102601860979017) supported by the National Natural Science Foundation of ChinaProject(20110111110015) supported by the Doctoral Fund of Ministry of Education of China
文摘Four kinds of Cu-based composites with different mass ratios of graphite and WS2 as lubricants were fabricated by hot-pressing method. Electrical sliding wear behaviors of the composites were investigated using a block-on-ring tribometer rubbing against Cu-5%Ag alloy ring. The results demonstrated that 800 ~C was the optimum sintering temperature for Cu-graphite-WS2 dual-lubricant composites to obtain the best comprehensive properties of mechanical strength and lubrication performance. Contact voltage drops of the Cu-based composites increased with increasing the mass ratio of WS2 to graphite. The Cu-based composite with 20% graphite and 10% WS2 showed the best wear resistance due to the excellent synergetic lubricating effect of graphite and WS2. The reasonable addition of WS2 into the Cu-graphite composite can remarkably improve the wear resistance without much rise of electrical energy loss which provides a novel principle of designing suitable sliding electrical contact materials for industrial applications.
文摘The electrical performance including breakdown voltage and turn-off speed of SOI-LIGBT is improved by incorporating a resistive field plate (RFP) and a p-MOSFET.The p-MOSFET is controlled by a signal detected from a point of the RFP.During the turning-off of the IGBT,the p-MOSFET is turned on,which provides a channel for the excessive carriers to flow out of the drift region and prevents the carriers from being injected into the drift region.At the same time,the electric field affected by the RFP makes the excessive carriers flow through a wider region,which almost eliminates the second phase of the turning-off of the SOI-LIGBT caused by the substrate bias.Faster turn-off speed is achieved by above two factors.During the on state of the IGBT,the p-MOSFET is off,which leads to an on-state performance like normal one.At least,the increase of the breakdown voltage for 25% and the decrease of the turn-off time for 65% can be achieved by this structure as can be verified by the numerical simulation results.
文摘IGBT with high switching speed is described based on the dynamic controlled anode- short,which incorpo- rates a normally- on,p- MOSFET controlled by the anode voltage indirectly.This device works just as normal when it is in on- state since the channel of the p- MOSFET is pinched- off.During the course of turning off,the channel of the p- MOSFET will prevent the injection of m inorities and introduce an extra access for the carriers to flow to the anode directly,which m akes the IGBT reach its off- state in a shorter time.The simulation results prove that the new structure can reduce the turn- off time by m ore than75 % compared with the normal one under the same break- down voltage and on- state perform ance.Only two more resistors are needed when using this structure,and the re- quirement of the drive circuits is just the sam e as normal.
基金supported by Major Research Program of National Natural Science Foundation of China(Grant No. 91026018)National Natural Science Foundation of China(Grant No. 60979017)Doctoral Fund of Ministry of Education of China(Grant No. 20110111110015)
文摘As the traditional graphite-based composites cannot meet the requirement of rapid developing modern industry, novel sliding electrical contact materials with high self-lubricating performance in multiple environments are eagerly required. Herein a copper-based composite with WS2 and graphite as solid lubricant are fabricated by powder metallurgy hot-pressed method. The friction and wear behaviors of the composites with and without current are investigated under the condition with sliding velocity of 10 m/s and normal load of 2.5N/cm 2 in both air and vacuum. Morphologies of the worn surfaces are observed by optical microscope and compositions of the lubricating films are analyzed by XPS. Surface profile curves and roughness of the worn surfaces are obtained by 2205 surface profiler. The results of wear tests show that the friction coefficient and wear volume loss of the composites with current are greater than that without current in both air and vacuum due to the adverse effects of electrical current which damaged the lubricating film partially and roughed the worn surfaces. XPS results demonstrate that the lubricating film formed in air is composed of oxides of Cu, WS2 , elemental S and graphite, while the lubricating film formed in vacuum is composed of Cu, WS2 and graphite. Because of the synergetic lubricating action of oxides of Cu, WS2 and graphite, the composites show low friction coefficient and wear volume loss in air condition. Owing to the fact that graphite loses its lubricity which makes WS2 become the only lubricant, severe adhesive and abrasive wear occur and result in a high value of wear rate in vacuum condition. The formation of the lubricating film on the contact interface between the brush and ring is one of the factors which can greatly affect the wear performance of the brushes. The low contact voltage drop of the composites in vacuum condition is attributed to the high content of Cu in the surface film. This study fabricated a kind of new sliding electrical contact self-lubricating composite with dual-lubricant which can work well in both air and vacuum environments and provides a comprehensive analysis on the lubrication mechanisms of the composite.
基金supported by the National Science Foundation of China(No.51607096)。
文摘For the advantages of easy realization and rapidly intelligent response,the one-cycle control was applied in five-phase six-leg switching power amplifier for magnetic bearing.This paper improves the one-cycle control considering resistance voltage drop and derives its mathematical models.The improved algorithm is compared with the former one.The simulation and experimental results show that the improved algorithm can effectively reduce the output current ripple,achieve good tracking of the given current,improve the control accuracy,and verify the effectiveness and superiority of the method.
基金funded by Youth Science Foundation Fund Project of National Natural Science Foundation of China(51607148)Science and Technology R&D Program of China State Railway Group Co.,Ltd.(SY2020G001)Project of Sichuan Science and Technology Program(2021YJ0028)。
文摘Purpose–The traction cable is paralleled with the existing traction network of electrified railway through transverse connecting line to form the scheme of long distance power supply for the traction network.This paper aims to study the scheme composition and power supply distance(PSD)of the scheme.Design/methodology/approach–Based on the structure of parallel traction network(referred to as“cable traction network(CTN)”),the power supply modes(PSMs)are divided into cableþdirect PSM and cableþautotransformer(AT)PSM(including Japanese mode,French mode and new mode).Taking cableþJapanese AT PSM as an example,the scheme of long distance power supply for CTN under the PSMs of co-phase and out-of-phase power supply are designed.On the basis of establishing the equivalent circuit model and the chain circuit model of CTN,taking the train working voltage as the constraint condition,and based on the power flow calculation of multiple train loads,the calculation formula and process for determining the PSD of CTN are given.The impedance and PSD of CTN under the cableþAT PSM are simulated and analyzed,and a certain line is taken as an example to compare the scheme design.Findings–Results show that the equivalent impedance of CTN under the cableþAT PSM is smaller,and the PSD is about 2.5 times of that under the AT PSM,which can effectively increase the PSD and the flexibility of external power supply location.Originality/value–The research content can effectively improve the PSD of traction power supply system and has important reference value for the engineering application of the scheme.
基金Project supported by the Program for New Century Excellent Talents in University,China(Grant No.NCET-10-0052)the Fundamental Research Funds for the Central Universities of China(Grant No.HEUCFT1008)
文摘A junction barrier Schottky (JBS) rectifier with an improved P-well on 4H-SiC is proposed to improve the VF-IR trade-off and the breakdown voltage. The reverse current density of the proposed JBS rectifier at 300 K and 800 V is about 3.3 × 10-s times that of the common JBS rectifier at no expense of the forward voltage drop. This is because the depletion layer thickness in the P-well region at the same reverse voltage is larger than in the P+ grid, resulting in a lower spreading current and tunneling current. As a result, the breakdown voltage of the proposed JBS rectifier is over 1.6 kV, that is about 0.8 times more than that of the common JBS rectifier due to the uniform electric field. Although the series resistance of the proposed JBS rectifier is a little larger than that of the common JBS rectifier, the figure of merit (FOM) of the proposed JBS rectifier is about 2.9 times that of the common JBS rectifier. Based on simulating the values of susceptibility of the two JBS rectifiers to electrostatic discharge (ESD) in the human body model (HBM) circuits, the failure energy of the proposed JBS rectifier increases 17% compared with that of the common JBS rectifier.
基金National Natural Science Foundation of China(No.50277016 and 50577028)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20050487044)
文摘The thin emitter structure was introduced into reversely switched dynistor(RSD) to improve its turn-on characteristics. According to the analysis of turn-on condition, thin emitter structure is capable of reducing the extraction action for the triggering plasma layer P1 during turn-on process, and satisfying the requirement that triggering electric charge cannot be exhausted and therefore enables RSD to turn on uniformly. The on-state thin emitter RSD was equivalent to an asymmetric pin diode model. The simulation result shows that the forward voltage drop of RSD falls with the decrease of doping dose in p^+-emitter in a certain range, and when the doping concentration is extremely tow, the decrease of the width of p^+-emitter can obtain a tow forward voltage drop. Thin emitter RSD chips were made by sintering AI on n-Si. The test result shows that their turn-on process is uniform and the voltage drop is 7.5 V when the peak conversion current is 5 500 A.
基金KETEP(Korea Institute of Energy Technology Evaluation and Planning)grant funded by the Korea government(MOTIE)(No.20191210301890)。
文摘In this paper,a new type of automatic transmitter(AT)is proposed to properly adjust the voltage of the train without installing additional equipment.The proposed tap-changing AT is expected to raise the voltage between catenary and rail by regulating the turn-ratio between primary and secondary winding according to catenary voltage and verified its effects through the multi ports network analysis technique modeling of it.Through the simulation and analysis of the electric railway systems,it is shown that it can secure the load capacity and solve the large voltage drop problem by raising the voltage across railway vehicles back to the normal voltage level.
文摘In this study, the authors aim to develop the interconnection inverter ofPV (photovoltaic generation) system with FRT (fault ride thorough) function and islanding detection function, and analyze the interaction between the both functions during the momentary voltage drop by using an analytical model of distribution system interconnected plural PV systems. Moreover, the authors propose a cooperated control method of the inverters ~vith the islanding detection function and FRT function, and carry out a numerical calculation in order to verify the validity of the proposed method.
基金supported by the Special Funds for the Construction of Industrial Technology System of Modern Agriculture(Citrus)(Grant No.CARS-26)National Key R&D Program(Grant No.2020YFD1000101)Hubei Province Key R&D Program(Grant No.2021BBA091).
文摘In order to solve the problems of complexity of control systems and the limited power supply of traditional fuelpowered and battery-driven transporters operating in mountainous orchards,a sliding contact line-powered track transporter was designed and manufactured based on theoretical calculations.Key components of the transporter were developed such as a PLC-based(programmable logic controller)control system,a sliding contact power supply,and transmission system,and a position limit device.The functions and performance of designed transporter were tested.The test results showed that the transporter exhibited a high stability of operation with an average operation velocity of 0.70 m/s,the maximum working slope of 48°,the maximum load of 400 kg,and the maximum remote control distance reaching 1482 m.When the power supply circuit of sliding contact line was 108.8 m in length,the maximum voltage drop was 2.4 V,and the maximum power loss was 174.72 W,which were close to the theoretical calculation values.With a single power supply cabinet,the transporter can operate normally for a maximum track distance of 175.69 m.All the technical indicators of the transporter met the design requirements,and the above-mentioned problems such as complexity of the control system and limited energy supply of the traditional mountain orchard transporter were well solved.This study can provide reference for the design and optimization of mountain orchard transporter.
基金supported by National Natural Science Foundation of China(No50741003)Key Project of Science and Technology of Ministry of Education of China (No107066)Anhui Provincial Natural Science Foundation(No070414181)
文摘Silver matrix composite brushes were fabricated by means of powder metallurgy, which included pressing at 300 MPa and then sintering for 1 h in pure H2 protective atmosphere at 700 ℃ and repressing at 500 MPa. Four kinds composites with different compositions were produced, and the mechanical properties and electrical wear performance were investigated. The results showed that the composite added with carbon nanotubes had a higher hardness and strength, a lower contact voltage drop and an excellent anti-wear property in electrical sliding wear, because of the reinforcement ability of carbon nanotubes. Adding graphite to the composite also decreased the wear loss and contact voltage drop, because graphite had an electrical current conducting ability which not only made the current pass the lubricating films easily but also eliminated and reduced the arc and spark effectively.
基金supported by the Major Research Program of the National Natural Science Foundation of China(Grant No.91026018)the National Natural Science Foundation of China(Grant No.60979017)the Doctoral Fund of Ministry of Education of China(Grant No.20110111110015)
文摘In this paper Cu-WS2-graphite-WS2nanotube composites were fabricated by powder metallurgy hot pressing method.The effect of current polarity on the wear rates and contact voltage drops of the composites were investigated using a brush-on-slip ring tribometer rubbing against Cu-5 wt.%Ag alloy ring in air and vacuum,respectively.The worn surfaces of the composites were analyzed by scanning electron microscopy(SEM)and X-ray photoelectron spectroscopy(XPS).Surface profile curves of the worn tracks were measured using the surface profiler.The results demonstrated that the current polarity has a significant effect on the wear rates and contact voltage drops of the composites in both air and vacuum conditions.Positive brush possesses a higher wear rate compared with the negative brush in the air atmosphere since the electrical field direction activates oxidation at the positive brush surface while inhibits oxidation at the negative brush surface.Except for the regular wear losses,the combined effect of molten metal bridge erosion and arc erosion cause the positive brush to lose extra material and the negative brush to gain extra material,so the positive brush shows a higher wear rate in the vacuum condition.The contact voltage drop of the positive brush is lower than that of the negative brush in the air atmosphere,but contrarily,the positive brush shows a higher contact voltage drop in the vacuum condition.
基金Project supported by the Major Research Program of the National Natural Science Foundation of China(91026018)the Doctoral Fund of Ministry of Education of China(2011011110015)the Shanghai City special artificial micro materials and Technology Key Laboratory Open Fund(ammt2013A-7)
文摘Sliding friction and wear experiments using Cu-La2O3-graphite composites against Cu-5 wt.%Ag alloy ring were conducted at a constant sliding speed of 10 m/s, a current density of 10 A/cm2 and a load of 2.5 N/cm2. These composites with different La2O3 and graphite contents were fabricated by hot-pressing. Physical and mechanical properties of the composites were examined. Morphologies of the worn surface of composites were observed using optical microscopy. X-ray photoelectron spectroscopy spectra were used to study compositions of the lubricating film. The results showed that with the increasing addition of La2O3, hardness, flexural strength and electrical resistivity increased, but the relative density dropped. The friction coefficient increased with the increasing addition of La2O3. Composite containing 3 vol.% of La2O3 and 37 vol.% of graphite showed the best wear resistance. The main wear mechanisms of composites were abrasive wear, oxidative wear and adhesive wear.
文摘A new lateral insulated-gate bipolar transistor (LIGBT) structure on SOI substrate, called an n-region controlled anode LIGBT (NCA-LIGBT), is proposed and discussed. The n-region controlled anode concept results in fast switch speeds, efficient area usage and effective suppression NDR in forward I-V characteristics. Simulation results of the key parameters (n-region doping concentration, length, thickness and p-base doping concentration) show that the NCA-LIGBT has a good tradeoff between turn-off time and on-state voltage drop. The proposed LIGBT is a novel device for power ICs such as PDP scan driver ICs.
文摘An accumulation channel trench gate insulated gate bipolar transistor (ACT-IGBT) is proposed. The simu- lation results show that for a blocking capability of 1200 V, the on-state voltage drops of ACT-IGBT are 1.5 and 2 V at a temperature of 300 and 400 K, respectively, at a collector current density of 100 A/cm2. In contrast, the on-state voltage drops of a conventional trench gate IGBT (CT-IGBT) are 1.7 and 2.4 V at a temperature of 300 and 400 K, respectively. Compared to the CT-IGBT, the ACT-IGBT has a lower on-state voltage drop and a larger forward bias safe operating area. Meanwhile, the forward blocking characteristics and turn-off performance of the ACT-IGBT are also analyzed.