The application areas of conventional push pull converters are limited because of high voltage stress of switches (twice of input voltage). This paper presents a novel zero voltage and zero current switching (ZCS)...The application areas of conventional push pull converters are limited because of high voltage stress of switches (twice of input voltage). This paper presents a novel zero voltage and zero current switching (ZCS) PWM push pull three level converter in which the voltage stress of switches is input voltage. With phase shifted modulation strategy, the leading switches can only realize zero voltage switching (ZVS), and the lagging switches can realize ZCS when block capacitor and block diodes are added. Using the strategy, the converter overcomes the drawbacks presented by the conventional push pull converter, such as magnetic aberration, large switch loss, and voltage spike on switches, so it can get higher efficiency, and a wider application area. The operating principle of the new converter is analyzed and verified on a 600 W, 50 kHz experimental prototype. Several zero voltage and zero current switching PWM push pull three level converters are proposed.展开更多
A new PWM converter based on soft switching is introduced. The converter uses a minimum number of devices, and requires less switching operations than conventional techniques. Switching is realized solely in a ZVS (z...A new PWM converter based on soft switching is introduced. The converter uses a minimum number of devices, and requires less switching operations than conventional techniques. Switching is realized solely in a ZVS (zero voltage switching) mode, therefore the loss is reduced and EMI (electromagnetic interference) is suppressed. The paper analyzes the operation of ZVS, and discusses the methods for maintaining a unit power factor and constant DC voltage. Changing the modulation index M and the phase angle θ keeps the input current in phase with the voltage. It also keeps the current sinusoidal, and ensures a constant output voltage.展开更多
Phase shifted converter realizes zero voltage switching (ZVS) with the use of leakage inductance of the main transformer, however, the realization of ZVS for lagging bridge leg is difficult. This paper proposes a c...Phase shifted converter realizes zero voltage switching (ZVS) with the use of leakage inductance of the main transformer, however, the realization of ZVS for lagging bridge leg is difficult. This paper proposes a current enhanced principle, and based on the principle, a novel phase shifted converter is proposed, which adds an auxi liary resonant net to the conventional full bridge converter to help the lagging bridge leg to realize ZVS. The principle and the design of the novel converter are analyzed, and the simulational and experimental results verify the principle.展开更多
Transient electromagnetic method(TEM)has been widely used in the field of medium and shallow underground detection due to its high detection efficiency and large detection depth.However,due to the long turn-off time o...Transient electromagnetic method(TEM)has been widely used in the field of medium and shallow underground detection due to its high detection efficiency and large detection depth.However,due to the long turn-off time of the transmitting current caused by the inductive characteristics of the transmitting coil,the early signals will be overwhelmed by primary field.Since the early signals contain most of shallow geological signals,it is necessary to reduce the long turn-off time to get shallow layer signal.Due to lack of a reliable and effective clamping method for high-power transmission at present,we design a TEM transmitter fast turn-off circuit,combining self-resonant zero-voltage switching technology with the corresponding timing control circuit to solve this problem effectively.A transient electromagnetic transmitter based on self-resonant constant voltage clamping technology was fabricated to charge the clamping capacitor.The rated transmitting current of the transmitter is 20 A,and the turn-off time is continuously adjustable from 550-50μs.Moreover,the current drop process is approximately linear rather than exponential attenuation.Compared with the existing clamping methods,the proposed clamping method solves the problems that transient voltage suppressor(TVS)clamping cannot be used in high-power occasions and has a high failure rate.It also solves the problem of long pre-charge time in traditional capacitor clamping methods due to insufficient inductance of the small size transmitting coil.The proposed method can provide a reference for fast shutdown of large current.展开更多
In this paper, the zero voltage switching (ZVS) region of a dual active bridge (DAB) converter with wide band-gap (WBG) power semiconductor device is analyzed. The ZVS region of a DAB converter varies depending on out...In this paper, the zero voltage switching (ZVS) region of a dual active bridge (DAB) converter with wide band-gap (WBG) power semiconductor device is analyzed. The ZVS region of a DAB converter varies depending on output power and voltage ratio. The DAB converters operate with hard switching at light loads, it is difficult to achieve high efficiency. Fortunately, WBG power semiconductor devices have excellent hard switching characteristics and can increase efficiency compared to silicon (Si) devices. In particular, WBG devices can achieve ZVS at low load currents due to their low parasitic output capacitance (C<sub>o,tr</sub>) characteristics. Therefore, in this paper, the ZVS operating resion is analyzed based on the characteristics of Si, silicon carbide (SiC) and gallium nitride (GaN). Power semiconductor devices. WBG devices with low C<sub>o,tr</sub> operate at ZVS at lower load currents compared to Si devices. To verify this, experiments are conducted and the results are analyzed using a 3 kW DAB converter. For Si devices, ZVS is achieved above 1.4 kW. For WBG devices, ZVS is achieved at 700 W. Due to the ZVS conditions depending on the switching device, the DAB converter using Si devices achieves a power conversion efficiency of 91% at 1.1 kW output. On the other hand, in the case of WBG devices, power conversion efficiency of more than 98% is achieved under 11 kW conditions. In conclusion, it is confirmed that the WBG device operates in ZVS at a lower load compared to the Si device, which is advantageous in increasing light load efficiency.展开更多
In this paper the influence of different carrier waveforms upon the output characteristics of PWM inverter is described in detail. When a triangular carrier waveform is used in hard-switching PWM inverters, harmonics ...In this paper the influence of different carrier waveforms upon the output characteristics of PWM inverter is described in detail. When a triangular carrier waveform is used in hard-switching PWM inverters, harmonics exist in the neighborhood of the output frequency of the inverter output voltage and current due to the dead time. The triangular carrier waveform used in soft-switching PWM inverter will cause difficulties in controlling resonance-trigger time, higher loss in the resonant circuit, and less utilization of the DC bus voltage. If a sawtooth carrier is used in hard-switching PWM inverter, there will be severe distortion in the current waveform. When sawtooth carriers with alternate positive and negative slopes are used in soft-switching PWM inverters, the resonance-trigger time is easy to control, and distortion in the output voltage and current caused by the dead time will not appear.展开更多
A polymer directional coupler (DC) electro-optic switch with push-pull electrodes and rib waveguides is designed based on the conformal transforming method, image method, coupled mode theory, and electro-optic modul...A polymer directional coupler (DC) electro-optic switch with push-pull electrodes and rib waveguides is designed based on the conformal transforming method, image method, coupled mode theory, and electro-optic modulation theory. Its structure and principle are described, the design and optimization are performed, and the characteristics are analyzed, including the coupling length, switching voltage, output power, insertion loss, and crosstalk. To realize normal switching function,the fabrication tolerance,wavelength shift, and coupling loss between a single mode fiber (SMF) and the waveguide are discussed. Simulation results show that the coupling length is 3082μm; the push-pull switching voltage is 2.14V;and the insertion loss and crosstalk are less than 1.14 and -30dB,respectively. The proposed analytical technique on waveguides and electrodes is proven to be accurate and computationally efficient when compared with the beam propa- gation method (BPM) and the experimental results.展开更多
Wide-bandgap(WBG)devices such as Gallium-Nitride(GaN)High Electron Mobility Transistors(HEMTs)have become popular in the power electronics industry as they offer a lower switching loss,higher thermal capability and hi...Wide-bandgap(WBG)devices such as Gallium-Nitride(GaN)High Electron Mobility Transistors(HEMTs)have become popular in the power electronics industry as they offer a lower switching loss,higher thermal capability and higher power density than conventional silicon devices.As an attempt of applying WBG devices to the wireless charging technology,this paper adopts two different types of normally-off GaN HEMTs.One adopts the cascode structure provided by Transphorm Inc,operated under 800kHz to charge a battery pack on an electric scooter at 48 V/500W,with the air gap between the transceiver and receiver of~10cm.The other is enhancement-mode GaN HEMTs provided by GaN Systems Inc,operated at~6MHz to use one transceiver to charge multiple cell phones@~20W.Both of these chargers have no magnetic cores to reduce the cost and weight.Experimental results show both types of GaN HEMTs significantly increased the charging efficiency over conventional Si devices.Challenges of applying such fast-transition devices are discussed,e.g.,common-source inductance and the gate-drive-loop parasitic.展开更多
Based on ZVZCS (zero voltage zero current switching) full bridge converter technique, a novel inverter welding power supply is designed, in which the secondary side of the transformer adopts passive clamping circuit...Based on ZVZCS (zero voltage zero current switching) full bridge converter technique, a novel inverter welding power supply is designed, in which the secondary side of the transformer adopts passive clamping circuit to reduce voltage stress of rectifying components. This supply can realize power switches ZVS (zero voltage switching ) or ZCS (zero current switching) within a very wide range of load; Only through setting up blocking capacitor in the primary side of transformer, the power transformer's bias in the full-bridge converter is suppressed and the primary current can be reset easily. In addition, how to calculate the blocking capacitor and its influence to power supply performance are also subjects discussed in this paper.展开更多
In this paper, analysis, design and implementation of non-isolated soft-switching bidirectional DC-DC converter with an active switch are described. The proposed topology gives the output voltage as twice as the input...In this paper, analysis, design and implementation of non-isolated soft-switching bidirectional DC-DC converter with an active switch are described. The proposed topology gives the output voltage as twice as the input voltage and enhances the efficiency up to 94.5% and 92.9% for boost and buck mode operation by proper selection of the duty cycle. Soft switching can be achieved at both steps up and step down operating modes. Small signal analysis based on state space averaging and transfer functions have been presented in detail for the proposed converter. Finally, the feasibility of the desired converter is confirmed to mat lab simulation and investigational results.展开更多
This paper proposes the design and experimentation of digital control of soft-switched interleaved boost converter using FPGA for Telecommunication System. The switching devices in the proposed converter are turned on...This paper proposes the design and experimentation of digital control of soft-switched interleaved boost converter using FPGA for Telecommunication System. The switching devices in the proposed converter are turned on and off with Zero Voltage Switching (ZVS) and Zero Current Switching (ZCS) respectively. The circuit is operated in Continuous Conduction Mode (CCM) with various load ranges having duty cycle of more than 50%. The proposed converter is studied by developing the simulation module in MATLAB/SIMULINK. A PI controller is designed and implemented in FPGA to obtain a regulated DC output for line and load variations. Simulation and experimentation results are verified with a prototype development of the proposed converter. The results indicate that the converter performance is enhanced with closed loop control.展开更多
This paper presents a new approach to alleviate the harmonics and to enhance the power factor of the ASD (adjustable speed drive). A conventional ASD with 2-level PWM (pulse width modulation) inverters generate hi...This paper presents a new approach to alleviate the harmonics and to enhance the power factor of the ASD (adjustable speed drive). A conventional ASD with 2-level PWM (pulse width modulation) inverters generate high dv/dt and high frequency common mode voltages which are harmful for the drive applications. It reduces the motor bearings life and conducted EMI (electro magnetic interference) deteriorates the insulation. In this paper, a diode clamped multilevel (3-level) inverter is used to perform dual task. It generates HF (high frequency) current to be injected at the input of the three-phase front-end rectifier thereby improving the harmonic spectra and the power factor. It also drives the induction motor. The salient feature of this paper is that it does not require separate converters for improving power factor and to drive induction motor. Furthermore, inverter switches operate with ZVS (zero voltage switching), thus reducing the switching losses substantially, The voltage stress of the switches also has been reduced to half of the conventional 2-level converter. The inverter is operated with SPWM (sinusoidal pulse width modulation) technique. The simulation results for a prototype of 2.2 kW are presented.展开更多
By using the output inductors and body capacitances without adding any component compared with hard switching synchronous rectifier,the topology of a soft switched synchronous rectifier with phase-shifted full bridge ...By using the output inductors and body capacitances without adding any component compared with hard switching synchronous rectifier,the topology of a soft switched synchronous rectifier with phase-shifted full bridge zero voltage switching DC/DC converter is proposed. The converter efficiency is maximized due to soft switching of the full bridge MOSFETs and the synchronous MOSFETs, and also the low conduction loss of synchronous MOSFET. The operation principles of the circuit are analyzed in detail and the small-signal model is derived, also the converter dynamic characteristics are analyzed. Frequency responses of transfer functions under different values of transformer primary leakage inductance are discussed. The experimental results were obtained from a 400 V input and 100 A/12 V output DC/DC converter operating at 100 kHz. The results show that the converter efficiency is 2% higher in rated power than traditional diode rectifier.展开更多
In this paper, a non-isolated stacked bidirectional DC-DC converter with zero-voltage-switching(ZVS) is introduced for the high step-up/step-down conversion systems. The extremely narrow turn-on and/or turn-off duty c...In this paper, a non-isolated stacked bidirectional DC-DC converter with zero-voltage-switching(ZVS) is introduced for the high step-up/step-down conversion systems. The extremely narrow turn-on and/or turn-off duty cycle existing in the conventional bidirectional buck-boost converters can be extended due to the stacked module configuration for large voltage conversion ratio applications. Furthermore, the switch voltage stress is halved because of the series connection of half bridge modules. The PWM plus phase-shift control strategy is employed, where the duty cycle is adopted to regulate the voltages between the input and output sides and the phaseshift angle is applied to achieve the power flow regulation.This decoupled control scheme can not only realize seamless bidirectional transition operation, but also achieve adaptive voltage balance for the power switches. In addition, ZVS soft-switching operation for all active switches is realized to minimize the switching losses. Finally, a prototype of 1 kW operating at 100 kHz is built and tested to demonstrate the effectiveness of the proposed converter and the control strategy.展开更多
In this paper the main technical data of the high speed camera(HSFC-PRO),components of gas triggered switch and the primary experimental results of the breakdown of gas triggered switch using high speed camera are int...In this paper the main technical data of the high speed camera(HSFC-PRO),components of gas triggered switch and the primary experimental results of the breakdown of gas triggered switch using high speed camera are introduced.Four photographs totaling in 24 nanoseconds in single trigger mode manifest that the breakdown consists of two phases,which are the breakdowns of the trigger electrode with positive and negative electrode successively. This phenomenon is consist with the electric field distribution simulation result with the help of the software ANSYS. Eight photographs in double trigger mode prove that the breakdown time of the gas triggered switch is above 10.5 microseconds.The elementary results show that high speed camera is a very efficient apparatus to study the discharge characteristics.This optical measuring technique is helpful to profoundly study the breakdown of high voltage switch. More studies and experiments would be continued in future.展开更多
With the continual increase in switching speed and rating of power semiconductors, the switching voltage spike becomes a serious problem. This paper describes a new technique of driving pulse edge modulation for insul...With the continual increase in switching speed and rating of power semiconductors, the switching voltage spike becomes a serious problem. This paper describes a new technique of driving pulse edge modulation for insulated gate bipolar transistors(IGBTs). By modulating the density and width of the pulse trains, without regulating the hardware circuit, the slope of the gate driving voltage is controlled to change the switching speed. This technique is used in the driving circuit based on complex programmable logic devices(CPLDs), and the switching voltage spike of IGBTs can be restrained through software, which is easier and more flexible to adjust. Experimental results demonstrate the effectiveness and practicability of the proposed method.展开更多
A 4-kbit low-cost one-time programmable (OTP) memory macro for embedded applications is designed and implemented in a 0.18-μm standard CMOS process. The area of the proposed 1.5 transistor (1.5T) OTP cell is 2.13...A 4-kbit low-cost one-time programmable (OTP) memory macro for embedded applications is designed and implemented in a 0.18-μm standard CMOS process. The area of the proposed 1.5 transistor (1.5T) OTP cell is 2.13 μm2, which is a 49.3% size reduction compared to the previously reported cells. The 1.5T cell is fabricated and measured and shows a large programming window without any disturbance. A novel high voltage switch (HVSW) circuit is also proposed to make sure the OTP macro, implemented in a standard CMOS process, works reliably with the high program voltage. The OTP macro is embedded in negative radio frequency identification (RFID) tags. The full chip size, including the analog front-end, digital controller and the 4-kbit OTP macro, is 600 × 600 μm2. The 4-kbit OTP macro only consumes 200 × 260 μm^2. The measurement shows a 100% program yield by adjusting the program time and has obvious advantages in the core area and power consumption compared to the reported 3T and 2T OTP cores.展开更多
文摘The application areas of conventional push pull converters are limited because of high voltage stress of switches (twice of input voltage). This paper presents a novel zero voltage and zero current switching (ZCS) PWM push pull three level converter in which the voltage stress of switches is input voltage. With phase shifted modulation strategy, the leading switches can only realize zero voltage switching (ZVS), and the lagging switches can realize ZCS when block capacitor and block diodes are added. Using the strategy, the converter overcomes the drawbacks presented by the conventional push pull converter, such as magnetic aberration, large switch loss, and voltage spike on switches, so it can get higher efficiency, and a wider application area. The operating principle of the new converter is analyzed and verified on a 600 W, 50 kHz experimental prototype. Several zero voltage and zero current switching PWM push pull three level converters are proposed.
文摘A new PWM converter based on soft switching is introduced. The converter uses a minimum number of devices, and requires less switching operations than conventional techniques. Switching is realized solely in a ZVS (zero voltage switching) mode, therefore the loss is reduced and EMI (electromagnetic interference) is suppressed. The paper analyzes the operation of ZVS, and discusses the methods for maintaining a unit power factor and constant DC voltage. Changing the modulation index M and the phase angle θ keeps the input current in phase with the voltage. It also keeps the current sinusoidal, and ensures a constant output voltage.
文摘Phase shifted converter realizes zero voltage switching (ZVS) with the use of leakage inductance of the main transformer, however, the realization of ZVS for lagging bridge leg is difficult. This paper proposes a current enhanced principle, and based on the principle, a novel phase shifted converter is proposed, which adds an auxi liary resonant net to the conventional full bridge converter to help the lagging bridge leg to realize ZVS. The principle and the design of the novel converter are analyzed, and the simulational and experimental results verify the principle.
文摘Transient electromagnetic method(TEM)has been widely used in the field of medium and shallow underground detection due to its high detection efficiency and large detection depth.However,due to the long turn-off time of the transmitting current caused by the inductive characteristics of the transmitting coil,the early signals will be overwhelmed by primary field.Since the early signals contain most of shallow geological signals,it is necessary to reduce the long turn-off time to get shallow layer signal.Due to lack of a reliable and effective clamping method for high-power transmission at present,we design a TEM transmitter fast turn-off circuit,combining self-resonant zero-voltage switching technology with the corresponding timing control circuit to solve this problem effectively.A transient electromagnetic transmitter based on self-resonant constant voltage clamping technology was fabricated to charge the clamping capacitor.The rated transmitting current of the transmitter is 20 A,and the turn-off time is continuously adjustable from 550-50μs.Moreover,the current drop process is approximately linear rather than exponential attenuation.Compared with the existing clamping methods,the proposed clamping method solves the problems that transient voltage suppressor(TVS)clamping cannot be used in high-power occasions and has a high failure rate.It also solves the problem of long pre-charge time in traditional capacitor clamping methods due to insufficient inductance of the small size transmitting coil.The proposed method can provide a reference for fast shutdown of large current.
文摘In this paper, the zero voltage switching (ZVS) region of a dual active bridge (DAB) converter with wide band-gap (WBG) power semiconductor device is analyzed. The ZVS region of a DAB converter varies depending on output power and voltage ratio. The DAB converters operate with hard switching at light loads, it is difficult to achieve high efficiency. Fortunately, WBG power semiconductor devices have excellent hard switching characteristics and can increase efficiency compared to silicon (Si) devices. In particular, WBG devices can achieve ZVS at low load currents due to their low parasitic output capacitance (C<sub>o,tr</sub>) characteristics. Therefore, in this paper, the ZVS operating resion is analyzed based on the characteristics of Si, silicon carbide (SiC) and gallium nitride (GaN). Power semiconductor devices. WBG devices with low C<sub>o,tr</sub> operate at ZVS at lower load currents compared to Si devices. To verify this, experiments are conducted and the results are analyzed using a 3 kW DAB converter. For Si devices, ZVS is achieved above 1.4 kW. For WBG devices, ZVS is achieved at 700 W. Due to the ZVS conditions depending on the switching device, the DAB converter using Si devices achieves a power conversion efficiency of 91% at 1.1 kW output. On the other hand, in the case of WBG devices, power conversion efficiency of more than 98% is achieved under 11 kW conditions. In conclusion, it is confirmed that the WBG device operates in ZVS at a lower load compared to the Si device, which is advantageous in increasing light load efficiency.
文摘In this paper the influence of different carrier waveforms upon the output characteristics of PWM inverter is described in detail. When a triangular carrier waveform is used in hard-switching PWM inverters, harmonics exist in the neighborhood of the output frequency of the inverter output voltage and current due to the dead time. The triangular carrier waveform used in soft-switching PWM inverter will cause difficulties in controlling resonance-trigger time, higher loss in the resonant circuit, and less utilization of the DC bus voltage. If a sawtooth carrier is used in hard-switching PWM inverter, there will be severe distortion in the current waveform. When sawtooth carriers with alternate positive and negative slopes are used in soft-switching PWM inverters, the resonance-trigger time is easy to control, and distortion in the output voltage and current caused by the dead time will not appear.
基金the National Natural Science Foundation of China(No.60706011)the Doctoral Program for New Teachers of the Ministry of Education of China(No.20070183087)the State Key Development Program for Basic Research of China(No.2006CB302803)~~
文摘A polymer directional coupler (DC) electro-optic switch with push-pull electrodes and rib waveguides is designed based on the conformal transforming method, image method, coupled mode theory, and electro-optic modulation theory. Its structure and principle are described, the design and optimization are performed, and the characteristics are analyzed, including the coupling length, switching voltage, output power, insertion loss, and crosstalk. To realize normal switching function,the fabrication tolerance,wavelength shift, and coupling loss between a single mode fiber (SMF) and the waveguide are discussed. Simulation results show that the coupling length is 3082μm; the push-pull switching voltage is 2.14V;and the insertion loss and crosstalk are less than 1.14 and -30dB,respectively. The proposed analytical technique on waveguides and electrodes is proven to be accurate and computationally efficient when compared with the beam propa- gation method (BPM) and the experimental results.
文摘Wide-bandgap(WBG)devices such as Gallium-Nitride(GaN)High Electron Mobility Transistors(HEMTs)have become popular in the power electronics industry as they offer a lower switching loss,higher thermal capability and higher power density than conventional silicon devices.As an attempt of applying WBG devices to the wireless charging technology,this paper adopts two different types of normally-off GaN HEMTs.One adopts the cascode structure provided by Transphorm Inc,operated under 800kHz to charge a battery pack on an electric scooter at 48 V/500W,with the air gap between the transceiver and receiver of~10cm.The other is enhancement-mode GaN HEMTs provided by GaN Systems Inc,operated at~6MHz to use one transceiver to charge multiple cell phones@~20W.Both of these chargers have no magnetic cores to reduce the cost and weight.Experimental results show both types of GaN HEMTs significantly increased the charging efficiency over conventional Si devices.Challenges of applying such fast-transition devices are discussed,e.g.,common-source inductance and the gate-drive-loop parasitic.
文摘Based on ZVZCS (zero voltage zero current switching) full bridge converter technique, a novel inverter welding power supply is designed, in which the secondary side of the transformer adopts passive clamping circuit to reduce voltage stress of rectifying components. This supply can realize power switches ZVS (zero voltage switching ) or ZCS (zero current switching) within a very wide range of load; Only through setting up blocking capacitor in the primary side of transformer, the power transformer's bias in the full-bridge converter is suppressed and the primary current can be reset easily. In addition, how to calculate the blocking capacitor and its influence to power supply performance are also subjects discussed in this paper.
文摘In this paper, analysis, design and implementation of non-isolated soft-switching bidirectional DC-DC converter with an active switch are described. The proposed topology gives the output voltage as twice as the input voltage and enhances the efficiency up to 94.5% and 92.9% for boost and buck mode operation by proper selection of the duty cycle. Soft switching can be achieved at both steps up and step down operating modes. Small signal analysis based on state space averaging and transfer functions have been presented in detail for the proposed converter. Finally, the feasibility of the desired converter is confirmed to mat lab simulation and investigational results.
文摘This paper proposes the design and experimentation of digital control of soft-switched interleaved boost converter using FPGA for Telecommunication System. The switching devices in the proposed converter are turned on and off with Zero Voltage Switching (ZVS) and Zero Current Switching (ZCS) respectively. The circuit is operated in Continuous Conduction Mode (CCM) with various load ranges having duty cycle of more than 50%. The proposed converter is studied by developing the simulation module in MATLAB/SIMULINK. A PI controller is designed and implemented in FPGA to obtain a regulated DC output for line and load variations. Simulation and experimentation results are verified with a prototype development of the proposed converter. The results indicate that the converter performance is enhanced with closed loop control.
文摘This paper presents a new approach to alleviate the harmonics and to enhance the power factor of the ASD (adjustable speed drive). A conventional ASD with 2-level PWM (pulse width modulation) inverters generate high dv/dt and high frequency common mode voltages which are harmful for the drive applications. It reduces the motor bearings life and conducted EMI (electro magnetic interference) deteriorates the insulation. In this paper, a diode clamped multilevel (3-level) inverter is used to perform dual task. It generates HF (high frequency) current to be injected at the input of the three-phase front-end rectifier thereby improving the harmonic spectra and the power factor. It also drives the induction motor. The salient feature of this paper is that it does not require separate converters for improving power factor and to drive induction motor. Furthermore, inverter switches operate with ZVS (zero voltage switching), thus reducing the switching losses substantially, The voltage stress of the switches also has been reduced to half of the conventional 2-level converter. The inverter is operated with SPWM (sinusoidal pulse width modulation) technique. The simulation results for a prototype of 2.2 kW are presented.
文摘By using the output inductors and body capacitances without adding any component compared with hard switching synchronous rectifier,the topology of a soft switched synchronous rectifier with phase-shifted full bridge zero voltage switching DC/DC converter is proposed. The converter efficiency is maximized due to soft switching of the full bridge MOSFETs and the synchronous MOSFETs, and also the low conduction loss of synchronous MOSFET. The operation principles of the circuit are analyzed in detail and the small-signal model is derived, also the converter dynamic characteristics are analyzed. Frequency responses of transfer functions under different values of transformer primary leakage inductance are discussed. The experimental results were obtained from a 400 V input and 100 A/12 V output DC/DC converter operating at 100 kHz. The results show that the converter efficiency is 2% higher in rated power than traditional diode rectifier.
基金supported by National Natural Science Foundation of China(No.51277195)
文摘In this paper, a non-isolated stacked bidirectional DC-DC converter with zero-voltage-switching(ZVS) is introduced for the high step-up/step-down conversion systems. The extremely narrow turn-on and/or turn-off duty cycle existing in the conventional bidirectional buck-boost converters can be extended due to the stacked module configuration for large voltage conversion ratio applications. Furthermore, the switch voltage stress is halved because of the series connection of half bridge modules. The PWM plus phase-shift control strategy is employed, where the duty cycle is adopted to regulate the voltages between the input and output sides and the phaseshift angle is applied to achieve the power flow regulation.This decoupled control scheme can not only realize seamless bidirectional transition operation, but also achieve adaptive voltage balance for the power switches. In addition, ZVS soft-switching operation for all active switches is realized to minimize the switching losses. Finally, a prototype of 1 kW operating at 100 kHz is built and tested to demonstrate the effectiveness of the proposed converter and the control strategy.
文摘In this paper the main technical data of the high speed camera(HSFC-PRO),components of gas triggered switch and the primary experimental results of the breakdown of gas triggered switch using high speed camera are introduced.Four photographs totaling in 24 nanoseconds in single trigger mode manifest that the breakdown consists of two phases,which are the breakdowns of the trigger electrode with positive and negative electrode successively. This phenomenon is consist with the electric field distribution simulation result with the help of the software ANSYS. Eight photographs in double trigger mode prove that the breakdown time of the gas triggered switch is above 10.5 microseconds.The elementary results show that high speed camera is a very efficient apparatus to study the discharge characteristics.This optical measuring technique is helpful to profoundly study the breakdown of high voltage switch. More studies and experiments would be continued in future.
基金Project supported by the National Natural Science Foundation of China(No.51177147)the Zhejiang Key Science and Technology Innovation Group Program,China(No.2010R50021)
文摘With the continual increase in switching speed and rating of power semiconductors, the switching voltage spike becomes a serious problem. This paper describes a new technique of driving pulse edge modulation for insulated gate bipolar transistors(IGBTs). By modulating the density and width of the pulse trains, without regulating the hardware circuit, the slope of the gate driving voltage is controlled to change the switching speed. This technique is used in the driving circuit based on complex programmable logic devices(CPLDs), and the switching voltage spike of IGBTs can be restrained through software, which is easier and more flexible to adjust. Experimental results demonstrate the effectiveness and practicability of the proposed method.
文摘A 4-kbit low-cost one-time programmable (OTP) memory macro for embedded applications is designed and implemented in a 0.18-μm standard CMOS process. The area of the proposed 1.5 transistor (1.5T) OTP cell is 2.13 μm2, which is a 49.3% size reduction compared to the previously reported cells. The 1.5T cell is fabricated and measured and shows a large programming window without any disturbance. A novel high voltage switch (HVSW) circuit is also proposed to make sure the OTP macro, implemented in a standard CMOS process, works reliably with the high program voltage. The OTP macro is embedded in negative radio frequency identification (RFID) tags. The full chip size, including the analog front-end, digital controller and the 4-kbit OTP macro, is 600 × 600 μm2. The 4-kbit OTP macro only consumes 200 × 260 μm^2. The measurement shows a 100% program yield by adjusting the program time and has obvious advantages in the core area and power consumption compared to the reported 3T and 2T OTP cores.