Air corona discharge is one of the critical problems associated with high-voltage equipment. Investigating the corona mechanism plays a key role in enhancing the electrical insulation performance. An improved self-con...Air corona discharge is one of the critical problems associated with high-voltage equipment. Investigating the corona mechanism plays a key role in enhancing the electrical insulation performance. An improved self-consistent multi-component two-dimensional plasma hybrid model is presented for the simulation of a direct current atmospheric pressure corona discharge in air. The model is based on plasma hydrodynamic and chemical models, and includes 12 species and 26 reactions. In addition, the photoionization effect is introduced into the model. The simulation on a bar-plate electrode configuration with an inter-electrode gap of 5.0 mm is carried out. The discharge voltage- current characteristics and the current density distribution predicted by the hybrid model agree with the experimental measurements. In addition, the dynamics of volume charged species generation, discharge current waveform, current density distribution at an electrode, charge density, electron temperature, and electric field variations are investigated in detail based on the model. The results indicate that the model can contribute valuable insights into the physics of an air plasma discharge.展开更多
The current-induced resistive switching behavior in the micron-scale pillars of low-doped La0.9Sr0.1MnO3 thin films using laser molecular-beam epitaxy was reported. It was demonstrated that the current-voltage curves ...The current-induced resistive switching behavior in the micron-scale pillars of low-doped La0.9Sr0.1MnO3 thin films using laser molecular-beam epitaxy was reported. It was demonstrated that the current-voltage curves at 120 K showed hysteresis with several threshold currents corresponding to the switching in resistance to metastable low resistance states, and finally, four closed loops were formed. A mode was proposed, which was based on the low-temperature canted antiferromagnetism ordering for a lightly doped insulating regime.展开更多
Electrical property of a micro-plasma spray system with different working-gas feed- ing schemes was tested to optimize the plasma spray process. The arc voltage with an integrated gas injection mode is higher than tha...Electrical property of a micro-plasma spray system with different working-gas feed- ing schemes was tested to optimize the plasma spray process. The arc voltage with an integrated gas injection mode is higher than that with radial injection or axial injection modes. Thus, an integrated gas injection mode with an excellent electrical characteristic was adopted to deposit alumina-titania coating. The microstructure, bonding strength and hardness of the plasma sprayed alumina-titania coating, as a function of the spraying parameters, e.g., plasma current, gas flow rate and gas pressure, were studied. It was shown that the spraying parameters affected remarkably on the microstructure of the coating. Different tendencies in bonding strength and hardness were also shown for different spraying parameters. At an arc current of 250 A, a gas flow rate of 20 L/min and a gas pressure of 0.5 MPa, the bonding strength and micro-hardness of the coatings reach 40.6 MPa and HV1406.1, respectively.展开更多
The electrical characteristics of an alternating current (AC) plasma igniter were investigated for a working gas of air at atmospheric pressure. The discharge voltage and current were measured in air in both breakdo...The electrical characteristics of an alternating current (AC) plasma igniter were investigated for a working gas of air at atmospheric pressure. The discharge voltage and current were measured in air in both breakdown and stable combustion processes, respectively, and the current-zero phenomena, voltage-current (V-I) characteristics were studied for different working gas flow rates. The results indicated that the working gas between anode and cathode could be ionized to generate gas discharge when the voltage reached 8 kV, and the maximum current was 33.36 A. When the current came to zero, current-zero phenomena appeared with duration of 2 #s. At the current-zero moment, dynamic resistance between electrodes became extremely high, and the maximum value could reach 445 kf~, which was the main factor to restrain the current. With increasing working gas flow rates, the gradient of V-I characteristic curves was increased, as was the dynamic resistance. At a constant driven power, the discharge voltage increased.展开更多
In this paper, we have investigated the design parameters of RF CMOS cells which will be used for switch in the wireless telecommunication systems. This RF switch is capable to select the data streams from the two ant...In this paper, we have investigated the design parameters of RF CMOS cells which will be used for switch in the wireless telecommunication systems. This RF switch is capable to select the data streams from the two antennas for both the transmitting and receiving processes. The results for the development of a cell-library which includes the basics of the circuit elements required for the radio frequency sub-systems of the integrated circuits such as V-I characteristics at low-voltages, contact resistance which is present in the switches and the potential barrier with contacts available in devices has been discussed.展开更多
The potential to save energy in existing consumer electrical appliances is very high. One of the ways to achieve energy saving and improve energy use awareness is to recognize the energy consumption of individual elec...The potential to save energy in existing consumer electrical appliances is very high. One of the ways to achieve energy saving and improve energy use awareness is to recognize the energy consumption of individual electrical appliances. To recognize the energy consumption of consumer electrical appliances, the load disaggregation methodology is utilized. Non-intrusive appliance load monitoring (NIALM) is a load disaggrega-tion methodology that disaggregates the sum of power consumption in a single point into the power consumption of individual electrical appliances. In this study, load disaggregation is performed through voltage and current waveform, known as the V-I trajectory. The classification algorithm performs cropping and image pyramid reduction of the V-I trajectory plot template images before utilizing the principal component analysis (PCA) and the k-nearest neighbor (k-NN) algorithm. The novelty of this paper is to establish a systematic approach of load disaggregation through V-I trajectory-based load signature images by utilizing a multi-stage classification algorithm methodol-ogy. The contribution of this paper is in utilizing the “k- value,” the number of closest data points to the nearest neighbor, in the k-NN algorithm to be effective in classification of electrical appliances. The results of the multi-stage classification algorithm implementation have been discussed and the idea on future work has also been proposed.展开更多
Laser-induced discharge plasmas(LDPs) have the potential to be inspection and metrology sources in extreme ultraviolet(EUV) lithography. An LDP EUV source was developed to avoid tin electrode erosion in which a tin po...Laser-induced discharge plasmas(LDPs) have the potential to be inspection and metrology sources in extreme ultraviolet(EUV) lithography. An LDP EUV source was developed to avoid tin electrode erosion in which a tin pool was used as a cathode. A CO2 pulse laser was focused on the liquid tin target surface, and then a breakdown occurred in a very short time. The voltage-current characteristics of the discharge oscillated, lasting for several microseconds, and an RLC fitting model was used to obtain the inductance and resistance. An intensified chargecoupled device(ICCD) camera was used to investigate the dynamics of LDP, which can explain the formation of a discharge channel. The EUV spectra of laser-induced liquid tin discharge plasma were detected by a grazing incident ultraviolet spectrometer, compared with a laser-produced tin droplet plasma EUV spectrum. To explain the EUV spectrum difference of laser-induced liquid tin discharge plasma and laser-produced tin droplet plasma,the collision radiation(CR) model combined with COWAN code was used to fit the experimental EUV spectrum, which can estimate the electron temperature and density of the plasma.展开更多
Based on characteristics of alternating current (AC) critical current of high temperature superconducting (HTS) tapes on the frequency, this paper focuses on AC voltage-current (U-I) behaviors of two kinds of hi...Based on characteristics of alternating current (AC) critical current of high temperature superconducting (HTS) tapes on the frequency, this paper focuses on AC voltage-current (U-I) behaviors of two kinds of high temperature superconducting tapes, by which BSCCO and YBCO carrying different frequency AC currents are tested in liquid nitrogen temperature of 77 K. It is shown that the AC U-I characteristic curves of different tapes consist of two parts, that is, the resistive part and the hysteresis part. Additionally, the n values of the two parts and the relationship between AC critical current and frequency are obtained through experiments. The experimental results agree with calculated ones well, which is useful for the application of HTS tapes to power technology.展开更多
The widely utilized high efficient particulate air filters(HEPA)and electrostatic precipitator(ESP)respectively has the shortcomings of relatively high energy consumption and low filtration efficiency.In order to over...The widely utilized high efficient particulate air filters(HEPA)and electrostatic precipitator(ESP)respectively has the shortcomings of relatively high energy consumption and low filtration efficiency.In order to overcome the disadvantages of two traditional air filtration system,electrostatic assisted air filtration system(combining HEPA and ESP)has been proven to achieve high filtration efficiency and low energy consumption simultaneously.Predicting of V-I characteristics of electrostatic filtration system with configuration of“pin to filter medium to grounded device”is very essential and challenging due to the back corona phenomenon.This study utilized the back-corona based current model to predict the V-I characteristics of electrostatic system with different filter medium types and“pin-to-filter”distances.Experiments are conducted to provide data for model validation by changing filter types and locations of discharge pin.The results indicated that both of the predicted values of total discharge current and back-corona induced current agreed well with the experimentally measured data.This validated mathematical model could be used for preliminary design of electrostatic assisted filtration system with configuration of“pin to filter to grounded device”.Based on the V-I characteristics predicted by the semi-empirical model,the electrostatic filtration efficiency could be estimated.展开更多
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB209401)the National Natural Science Foundation of China (Grant No. 51007096)the Scientific Research Foundation of State Key Lab of Power Transmission Equipment and System Security, China (Grant No. 2007DA10512709102)
文摘Air corona discharge is one of the critical problems associated with high-voltage equipment. Investigating the corona mechanism plays a key role in enhancing the electrical insulation performance. An improved self-consistent multi-component two-dimensional plasma hybrid model is presented for the simulation of a direct current atmospheric pressure corona discharge in air. The model is based on plasma hydrodynamic and chemical models, and includes 12 species and 26 reactions. In addition, the photoionization effect is introduced into the model. The simulation on a bar-plate electrode configuration with an inter-electrode gap of 5.0 mm is carried out. The discharge voltage- current characteristics and the current density distribution predicted by the hybrid model agree with the experimental measurements. In addition, the dynamics of volume charged species generation, discharge current waveform, current density distribution at an electrode, charge density, electron temperature, and electric field variations are investigated in detail based on the model. The results indicate that the model can contribute valuable insights into the physics of an air plasma discharge.
基金the National Basic Research Program of Chinathe National Natural Science Foundation of China+1 种基金the Key Project of Chinese Ministry of EducationBeijing Natural Science Foundation
文摘The current-induced resistive switching behavior in the micron-scale pillars of low-doped La0.9Sr0.1MnO3 thin films using laser molecular-beam epitaxy was reported. It was demonstrated that the current-voltage curves at 120 K showed hysteresis with several threshold currents corresponding to the switching in resistance to metastable low resistance states, and finally, four closed loops were formed. A mode was proposed, which was based on the low-temperature canted antiferromagnetism ordering for a lightly doped insulating regime.
文摘Electrical property of a micro-plasma spray system with different working-gas feed- ing schemes was tested to optimize the plasma spray process. The arc voltage with an integrated gas injection mode is higher than that with radial injection or axial injection modes. Thus, an integrated gas injection mode with an excellent electrical characteristic was adopted to deposit alumina-titania coating. The microstructure, bonding strength and hardness of the plasma sprayed alumina-titania coating, as a function of the spraying parameters, e.g., plasma current, gas flow rate and gas pressure, were studied. It was shown that the spraying parameters affected remarkably on the microstructure of the coating. Different tendencies in bonding strength and hardness were also shown for different spraying parameters. At an arc current of 250 A, a gas flow rate of 20 L/min and a gas pressure of 0.5 MPa, the bonding strength and micro-hardness of the coatings reach 40.6 MPa and HV1406.1, respectively.
基金supported by National Natural Science Foundation of China(Nos.50776100,51106179)
文摘The electrical characteristics of an alternating current (AC) plasma igniter were investigated for a working gas of air at atmospheric pressure. The discharge voltage and current were measured in air in both breakdown and stable combustion processes, respectively, and the current-zero phenomena, voltage-current (V-I) characteristics were studied for different working gas flow rates. The results indicated that the working gas between anode and cathode could be ionized to generate gas discharge when the voltage reached 8 kV, and the maximum current was 33.36 A. When the current came to zero, current-zero phenomena appeared with duration of 2 #s. At the current-zero moment, dynamic resistance between electrodes became extremely high, and the maximum value could reach 445 kf~, which was the main factor to restrain the current. With increasing working gas flow rates, the gradient of V-I characteristic curves was increased, as was the dynamic resistance. At a constant driven power, the discharge voltage increased.
文摘In this paper, we have investigated the design parameters of RF CMOS cells which will be used for switch in the wireless telecommunication systems. This RF switch is capable to select the data streams from the two antennas for both the transmitting and receiving processes. The results for the development of a cell-library which includes the basics of the circuit elements required for the radio frequency sub-systems of the integrated circuits such as V-I characteristics at low-voltages, contact resistance which is present in the switches and the potential barrier with contacts available in devices has been discussed.
文摘The potential to save energy in existing consumer electrical appliances is very high. One of the ways to achieve energy saving and improve energy use awareness is to recognize the energy consumption of individual electrical appliances. To recognize the energy consumption of consumer electrical appliances, the load disaggregation methodology is utilized. Non-intrusive appliance load monitoring (NIALM) is a load disaggrega-tion methodology that disaggregates the sum of power consumption in a single point into the power consumption of individual electrical appliances. In this study, load disaggregation is performed through voltage and current waveform, known as the V-I trajectory. The classification algorithm performs cropping and image pyramid reduction of the V-I trajectory plot template images before utilizing the principal component analysis (PCA) and the k-nearest neighbor (k-NN) algorithm. The novelty of this paper is to establish a systematic approach of load disaggregation through V-I trajectory-based load signature images by utilizing a multi-stage classification algorithm methodol-ogy. The contribution of this paper is in utilizing the “k- value,” the number of closest data points to the nearest neighbor, in the k-NN algorithm to be effective in classification of electrical appliances. The results of the multi-stage classification algorithm implementation have been discussed and the idea on future work has also been proposed.
文摘Laser-induced discharge plasmas(LDPs) have the potential to be inspection and metrology sources in extreme ultraviolet(EUV) lithography. An LDP EUV source was developed to avoid tin electrode erosion in which a tin pool was used as a cathode. A CO2 pulse laser was focused on the liquid tin target surface, and then a breakdown occurred in a very short time. The voltage-current characteristics of the discharge oscillated, lasting for several microseconds, and an RLC fitting model was used to obtain the inductance and resistance. An intensified chargecoupled device(ICCD) camera was used to investigate the dynamics of LDP, which can explain the formation of a discharge channel. The EUV spectra of laser-induced liquid tin discharge plasma were detected by a grazing incident ultraviolet spectrometer, compared with a laser-produced tin droplet plasma EUV spectrum. To explain the EUV spectrum difference of laser-induced liquid tin discharge plasma and laser-produced tin droplet plasma,the collision radiation(CR) model combined with COWAN code was used to fit the experimental EUV spectrum, which can estimate the electron temperature and density of the plasma.
基金This work was supported in part by the National Natural Science Foundation of China (Grant No. 51077051).
文摘Based on characteristics of alternating current (AC) critical current of high temperature superconducting (HTS) tapes on the frequency, this paper focuses on AC voltage-current (U-I) behaviors of two kinds of high temperature superconducting tapes, by which BSCCO and YBCO carrying different frequency AC currents are tested in liquid nitrogen temperature of 77 K. It is shown that the AC U-I characteristic curves of different tapes consist of two parts, that is, the resistive part and the hysteresis part. Additionally, the n values of the two parts and the relationship between AC critical current and frequency are obtained through experiments. The experimental results agree with calculated ones well, which is useful for the application of HTS tapes to power technology.
基金The authors would like to acknowledge the coordinated support from Natural Science Foundation of China(Grant No.51808138,51778385,51878442).
文摘The widely utilized high efficient particulate air filters(HEPA)and electrostatic precipitator(ESP)respectively has the shortcomings of relatively high energy consumption and low filtration efficiency.In order to overcome the disadvantages of two traditional air filtration system,electrostatic assisted air filtration system(combining HEPA and ESP)has been proven to achieve high filtration efficiency and low energy consumption simultaneously.Predicting of V-I characteristics of electrostatic filtration system with configuration of“pin to filter medium to grounded device”is very essential and challenging due to the back corona phenomenon.This study utilized the back-corona based current model to predict the V-I characteristics of electrostatic system with different filter medium types and“pin-to-filter”distances.Experiments are conducted to provide data for model validation by changing filter types and locations of discharge pin.The results indicated that both of the predicted values of total discharge current and back-corona induced current agreed well with the experimentally measured data.This validated mathematical model could be used for preliminary design of electrostatic assisted filtration system with configuration of“pin to filter to grounded device”.Based on the V-I characteristics predicted by the semi-empirical model,the electrostatic filtration efficiency could be estimated.