This paper deals with the uniqueness and existence of periodic solutions of neutral Volterraintegrodifferential equations (1) and (2). Some new unique existence criteria are obtained.
In this paper, we discuss the problem of stability of Volterra integrodifferential equationwith the decompositionwhere andin which is an matrix of functionB continuous forin which is an matrix of functionscontinuous f...In this paper, we discuss the problem of stability of Volterra integrodifferential equationwith the decompositionwhere andin which is an matrix of functionB continuous forin which is an matrix of functionscontinuous for 0≤S≤ t<∞.According to the decomposition theory of large scale system and with the help of Liapunovfunctional, we give a criterion for concluding that the zero solution of (2) (i.e. large scale system(1)) is uniformly asymptotically stable.We also discuss the large scale system with the decompositionand give a criterion for determining that the solutions of (4) (i.e. large scale system (3)) areuniformly bounded and uniformly ultimately bounded.Those criteria are of simple forms, easily checked and applied.展开更多
基金project is supported by National Natural Science Foundation of China
文摘This paper deals with the uniqueness and existence of periodic solutions of neutral Volterraintegrodifferential equations (1) and (2). Some new unique existence criteria are obtained.
基金This project is supported by the National Natural Science Foundation of China
文摘In this paper, we discuss the problem of stability of Volterra integrodifferential equationwith the decompositionwhere andin which is an matrix of functionB continuous forin which is an matrix of functionscontinuous for 0≤S≤ t<∞.According to the decomposition theory of large scale system and with the help of Liapunovfunctional, we give a criterion for concluding that the zero solution of (2) (i.e. large scale system(1)) is uniformly asymptotically stable.We also discuss the large scale system with the decompositionand give a criterion for determining that the solutions of (4) (i.e. large scale system (3)) areuniformly bounded and uniformly ultimately bounded.Those criteria are of simple forms, easily checked and applied.