Remaining useful life(RUL)prediction is an advanced technique for system maintenance scheduling.Most of existing RUL prediction methods are only interested in the precision of RUL estimation;the adverse impact of over...Remaining useful life(RUL)prediction is an advanced technique for system maintenance scheduling.Most of existing RUL prediction methods are only interested in the precision of RUL estimation;the adverse impact of overestimated RUL on maintenance scheduling is not of concern.In this work,an RUL estimation method with risk-averse adaptation is developed which can reduce the over-estimation rate while maintaining a reasonable under-estimation level.The proposed method includes a module of degradation feature selection to obtain crucial features which reflect system degradation trends.Then,the latent structure between the degradation features and the RUL labels is modeled by a support vector regression(SVR)model and a long short-term memory(LSTM)network,respectively.To enhance the prediction robustness and increase its marginal utility,the SVR model and the LSTM model are integrated to generate a hybrid model via three connection parameters.By designing a cost function with penalty mechanism,the three parameters are determined using a modified grey wolf optimization algorithm.In addition,a cost metric is proposed to measure the benefit of such a risk-averse predictive maintenance method.Verification is done using an aero-engine data set from NASA.The results show the feasibility and effectiveness of the proposed RUL estimation method and the predictive maintenance strategy.展开更多
针对多变量混沌时间序列,给出一种Volterra滤波器实现结构。该滤波器利用基于奇异值分解的最小二乘法确定初始核,通过归一化最小均方差(normalized least mean square,NLMS)算法实时确定滤波系数,并用这种多变量Volterra结构对Lorenz时...针对多变量混沌时间序列,给出一种Volterra滤波器实现结构。该滤波器利用基于奇异值分解的最小二乘法确定初始核,通过归一化最小均方差(normalized least mean square,NLMS)算法实时确定滤波系数,并用这种多变量Volterra结构对Lorenz时间序列进行仿真。计算结果表明,在无噪声情况下,该方法的实时一步预测精度比目前单变量混沌时间序列Volterra自适应预测方法的一步预测精度提高了102倍,表明这种实现结构易实现且收敛性能更好;在有噪声的情况下,该方法的实时多步预测性能优于局部多项式预测法的多步预测性能,且抗噪性更强。展开更多
Acoustic reverberation signals generated by an experimental explosive source are analyzed by nonlinear dynamical methods. Three characteristic parameters, i.e., the correlation dimension, the largest Lyapunov exponent...Acoustic reverberation signals generated by an experimental explosive source are analyzed by nonlinear dynamical methods. Three characteristic parameters, i.e., the correlation dimension, the largest Lyapunov exponent, and the Kolmogorov en- tropy, are estimated in the reconstructed phase space. The results indicate that the reverberation signals are nonlinear. The Volterra adaptive prediction method is introduced to model the oceanic reverberation signals. The reverberation time series can be predicted in short term with small prediction errors. A preliminary conclusion can be reached that the nonlinear low-dimensional dynamic sys- tem model is more suitable for modeling oceanic reverberation than the classical random AR model.展开更多
基金support by Natural Science Foundation of China(61873122)。
文摘Remaining useful life(RUL)prediction is an advanced technique for system maintenance scheduling.Most of existing RUL prediction methods are only interested in the precision of RUL estimation;the adverse impact of overestimated RUL on maintenance scheduling is not of concern.In this work,an RUL estimation method with risk-averse adaptation is developed which can reduce the over-estimation rate while maintaining a reasonable under-estimation level.The proposed method includes a module of degradation feature selection to obtain crucial features which reflect system degradation trends.Then,the latent structure between the degradation features and the RUL labels is modeled by a support vector regression(SVR)model and a long short-term memory(LSTM)network,respectively.To enhance the prediction robustness and increase its marginal utility,the SVR model and the LSTM model are integrated to generate a hybrid model via three connection parameters.By designing a cost function with penalty mechanism,the three parameters are determined using a modified grey wolf optimization algorithm.In addition,a cost metric is proposed to measure the benefit of such a risk-averse predictive maintenance method.Verification is done using an aero-engine data set from NASA.The results show the feasibility and effectiveness of the proposed RUL estimation method and the predictive maintenance strategy.
文摘针对多变量混沌时间序列,给出一种Volterra滤波器实现结构。该滤波器利用基于奇异值分解的最小二乘法确定初始核,通过归一化最小均方差(normalized least mean square,NLMS)算法实时确定滤波系数,并用这种多变量Volterra结构对Lorenz时间序列进行仿真。计算结果表明,在无噪声情况下,该方法的实时一步预测精度比目前单变量混沌时间序列Volterra自适应预测方法的一步预测精度提高了102倍,表明这种实现结构易实现且收敛性能更好;在有噪声的情况下,该方法的实时多步预测性能优于局部多项式预测法的多步预测性能,且抗噪性更强。
文摘Acoustic reverberation signals generated by an experimental explosive source are analyzed by nonlinear dynamical methods. Three characteristic parameters, i.e., the correlation dimension, the largest Lyapunov exponent, and the Kolmogorov en- tropy, are estimated in the reconstructed phase space. The results indicate that the reverberation signals are nonlinear. The Volterra adaptive prediction method is introduced to model the oceanic reverberation signals. The reverberation time series can be predicted in short term with small prediction errors. A preliminary conclusion can be reached that the nonlinear low-dimensional dynamic sys- tem model is more suitable for modeling oceanic reverberation than the classical random AR model.