1. Introduction It is known that the following Cauchy problem for a parabolic partial differential equation (where the values at the right boundary, u.(1, t)=v(t) are unknown and sought for) is ill-posed: the solution...1. Introduction It is known that the following Cauchy problem for a parabolic partial differential equation (where the values at the right boundary, u.(1, t)=v(t) are unknown and sought for) is ill-posed: the solution (v) does not depend continuously on the data (g). In order to treat the ill-posedness and develop the numerical method, one reformulates the problem as a Volterra integral equation of the first kind wish a convolution type kernel (see Sneddon [1], Carslaw and Jaeger [2])展开更多
The elastodynamic problems of piezoelectric hollow cylinders and spheres under radial deformation can be transformed into a second kind Volterra integral equation about a function with respect to time, which greatly s...The elastodynamic problems of piezoelectric hollow cylinders and spheres under radial deformation can be transformed into a second kind Volterra integral equation about a function with respect to time, which greatly simplifies the solving procedure for such elastodynamic problems. Meanwhile, it becomes very important to find a way to solve the second kind Volterra integral equation effectively and quickly. By using an interpolation function to approximate the unknown function, two new recursive formulae were derived, based on which numerical solution can be obtained step by step. The present method can provide accurate numerical results efficiently. It is also very stable for long time calculating.展开更多
In this paper, we suggest a method for solving Fredholm integral equation of the first kind based on wavelet basis. The continuous Legendre and Chebyshev wavelets of the first, second, third and fourth kind on [0,1] a...In this paper, we suggest a method for solving Fredholm integral equation of the first kind based on wavelet basis. The continuous Legendre and Chebyshev wavelets of the first, second, third and fourth kind on [0,1] are used and are utilized as a basis in Galerkin method to approximate the solution of integral equations. Then, in some examples the mentioned wavelets are compared with each other.展开更多
In this study, we prove the of existence of solutions of a convolution Volterra integral equation in the space of the Lebesgue integrable function on the set of positive real numbers and with the standard norm defined...In this study, we prove the of existence of solutions of a convolution Volterra integral equation in the space of the Lebesgue integrable function on the set of positive real numbers and with the standard norm defined on it. An operator P was assigned to the convolution integral operator which was later expressed in terms of the superposition operator and the nonlinear operator. Given a ball B<sub>r</sub> belonging to the space L it was established that the operator P maps the ball into itself. The Hausdorff measure of noncompactness was then applied by first proving that given a set M∈ B r the set is bounded, closed, convex and nondecreasing. Finally, the Darbo fixed point theorem was applied on the measure obtained from the set E belonging to M. From this application, it was observed that the conditions for the Darbo fixed point theorem was satisfied. This indicated the presence of at least a fixed point for the integral equation which thereby implying the existence of solutions for the integral equation.展开更多
Using the Picard iteration method and treating the involved integration by numerical quadrature formulas, we propose a numerical scheme for the second kind nonlinear Volterra integral equations. For enlarging the conv...Using the Picard iteration method and treating the involved integration by numerical quadrature formulas, we propose a numerical scheme for the second kind nonlinear Volterra integral equations. For enlarging the convergence region of the Picard iteration method, multistage algorithm is devised. We also introduce an algorithm for problems with some singularities at the limits of integration including fractional integral equations. Numerical tests verify the validity of the proposed schemes.展开更多
The article is considering the third kind of nonlinear Volterra-Stieltjes integral equations with the solution by Lavrentyev regularizing operator. A uniqueness theorem was proved, and a regularization parameter was c...The article is considering the third kind of nonlinear Volterra-Stieltjes integral equations with the solution by Lavrentyev regularizing operator. A uniqueness theorem was proved, and a regularization parameter was chosen. This can be used in further development of the theory of the integral equations in non-standard problems, classes in the numerical solution of third kind Volterra-Stieltjes integral equations, and when solving specific problems that lead to equations of the third kind.展开更多
This paper is concerned with obtaining the approximate solution for Volterra- Hammerstein integral equation with a regular kernel. We choose the Gauss points associated with the Legendre weight function w(x) = 1 as ...This paper is concerned with obtaining the approximate solution for Volterra- Hammerstein integral equation with a regular kernel. We choose the Gauss points associated with the Legendre weight function w(x) = 1 as the collocation points. The Legendre collocation discretization is proposed for Volterra-Hammerstein integral equation. We provide an error analysis which justifies that the errors of approximate solution decay exponentially in L2 norm and L^∞ norm. We give two numerical examples in order to illustrate the validity of the proposed Legendre spectral collocation method.展开更多
The regularized integrodifferential equation for the first kind of Fredholm, integral equation with a complex kernel is derived by generalizing the Tikhonov regularization method and the convergence of approximate reg...The regularized integrodifferential equation for the first kind of Fredholm, integral equation with a complex kernel is derived by generalizing the Tikhonov regularization method and the convergence of approximate regularized solutions is discussed. As an application of the method, an inverse problem in the two-dimensional wave-making problem of a flat plate is solved numerically, and a practical approach of choosing optimal regularization parameter is given.展开更多
In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space whic...In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space which consists of functions with vector valued in a general Banach space, and then describe the solution of these abstract boundary value problem by the abstract linear integral operator of Volterra type. We call this process the integral operator solving process.展开更多
In this article, we study the Volterra integral equations with two kinds of delay that are proportional delay and nonproportional delay. We mainly use Chebyshev spectral collocation method to analyze them. First, we u...In this article, we study the Volterra integral equations with two kinds of delay that are proportional delay and nonproportional delay. We mainly use Chebyshev spectral collocation method to analyze them. First, we use variable transformation to transform the equation into an new equation which is defined in [-1,1]. Then, with the help of Gronwall inequality and some other lemmas, we provide a rigorous error analysis for the proposed method, which shows that the numerical error decay exponentially in L~∞ and L_(ω~c)~2-norm. In the end, we give numerical test to confirm the conclusion.展开更多
Abstract A new function-valued partial Padé-type approximation was introduced in the polynomial space, and an explicit determinant formula was derived by means of some orthogonal polynomials. This method can be a...Abstract A new function-valued partial Padé-type approximation was introduced in the polynomial space, and an explicit determinant formula was derived by means of some orthogonal polynomials. This method can be applied to estimating surplus eigenvalues of the Fredholm integral equation of the second kind when its partial eigenvalues have been known, and at the same time, it can be applied to solving the approximating solution of the given equation.展开更多
The dual integral equations of vertical forced vibration of elastic plate on an elastic half space subject to harmonic uniform distribution loading are established according to the mixed boundary-value condition. By a...The dual integral equations of vertical forced vibration of elastic plate on an elastic half space subject to harmonic uniform distribution loading are established according to the mixed boundary-value condition. By applying Abel transformation the dual integral equations are reduced to Fredholm integral equation of the second kind which is solved numerically.展开更多
In this paper, we will use the successive approximation method for solving Fredholm integral equation of the second kind using Maple18. By means of this method, an algorithm is successfully established for solving the...In this paper, we will use the successive approximation method for solving Fredholm integral equation of the second kind using Maple18. By means of this method, an algorithm is successfully established for solving the non-linear Fredholm integral equation of the second kind. Finally, several examples are presented to illustrate the application of the algorithm and results appear that this method is very effective and convenient to solve these equations.展开更多
The elastodynamic problems of magneto-electro-elastic hollow cylinders in the state of axisymmetric plane strain case can be transformed into two Volterra integral equations of the second kind about two functions with...The elastodynamic problems of magneto-electro-elastic hollow cylinders in the state of axisymmetric plane strain case can be transformed into two Volterra integral equations of the second kind about two functions with respect to time. Interpolation functions were introduced to approximate two unknown functions in each time subinterval and two new recursive formulae are derived. By using the recursive formulae, numerical results were obtained step by step. Under the same time step, the accuracy of the numerical results by the present method is much higher than that by the traditional quadrature method.展开更多
Homotopy Analysis Method(HAM)is semi-analytic method to solve the linear and nonlinear mathematical models which can be used to obtain the approximate solution.The HAM includes an auxiliary parameter,which is an effic...Homotopy Analysis Method(HAM)is semi-analytic method to solve the linear and nonlinear mathematical models which can be used to obtain the approximate solution.The HAM includes an auxiliary parameter,which is an efficient way to examine and analyze the accuracy of linear and nonlinear problems.The main aim of this work is to explore the approximate solutions of fuzzy Volterra integral equations(both linear and nonlinear)with a separable kernel via HAM.This method provides a reliable way to ensure the convergence of the approximation series.A new general form of HAM is presented and analyzed in the fuzzy domain.A qualitative convergence analysis based on the graphical method of a fuzzy HAM is discussed.The solutions sought by the proposed method show that the HAM is easy to implement and computationally quite attractive.Some solutions of fuzzy second kind Volterra integral equations are solved as numerical examples to show the potential of the method.The results also show that HAM provides an easy way to control and modify the convergence area in order to obtain accurate solutions.展开更多
In this work we suggestion new methods investigation the model Volterra type integral equation with logarithmic singularity, kernel which consisting from composition polynomial function with logarithmic singularity an...In this work we suggestion new methods investigation the model Volterra type integral equation with logarithmic singularity, kernel which consisting from composition polynomial function with logarithmic singularity and function with singular point. The problem investigation this type integral equation at n = 2m reduce to problem investigate the Volterra type integral equation (1) for n = 2 the theory for which was constructed in [2]. In this work, we investigation integral equation (1) at = 2m + 1 In this case, we investigate integral equation (1) reduction it's to m integral equation type [2] φ(x)+∫xa[p1+p2 ln(x-a/t-a)]φ(t)/t-a dt=f(x)and one the following integral equation [1] ω(x)+p3∫xω(t)/ a t-adt=g(x).展开更多
Integral equations theoretical parts and applications have been studied and investigated in previous works. In this work, results on investigations of the uniqueness of the Fredholm-Stiltjes linear integral equations ...Integral equations theoretical parts and applications have been studied and investigated in previous works. In this work, results on investigations of the uniqueness of the Fredholm-Stiltjes linear integral equations solutions of the third kind were considered. Volterra integral equations of the first and third kind with smooth kernels were studied, and proof of the existence of a multiparameter family of solutions is described. Additionally, linear Fredholm integral equations of the first kind were investigated, for which Lavrent’ev regularizing operators were constructed.展开更多
In this paper, we use the Sinc Function to solve the Fredholme-Volterra Integral Equations. By using collocation method we estimate a solution for Fredholme-Volterra Integral Equations. Finally convergence of this met...In this paper, we use the Sinc Function to solve the Fredholme-Volterra Integral Equations. By using collocation method we estimate a solution for Fredholme-Volterra Integral Equations. Finally convergence of this method will be discussed and efficiency of this method is shown by some examples. Numerical examples show that the approximate solutions have a good degree of accuracy.展开更多
In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytical...In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytically derive a comparison theorem for them and for the continuous equilibrium consumption process. These continuous equilibrium consumption processes can be described by the solutions to this class of ABSVIE with jumps.Motivated by this, a class of dynamic risk measures induced by ABSVIEs with jumps are discussed.展开更多
Volterra type integral equations have diverse applications in scientific and other fields. Modelling physical phenomena by employing integral equations is not a new concept. Similarly, extensive research is underway t...Volterra type integral equations have diverse applications in scientific and other fields. Modelling physical phenomena by employing integral equations is not a new concept. Similarly, extensive research is underway to find accurate and efficient solution methods for integral equations. Some of noteworthy methods include Adomian Decomposition Method (ADM), Variational Iteration Method (VIM), Method of Successive Approximation (MSA), Galerkin method, Laplace transform method, etc. This research is focused on demonstrating Elzaki transform application for solution of linear Volterra integral equations which include convolution type equations as well as one system of equations. The selected problems are available in literature and have been solved using various analytical, semi-analytical and numerical techniques. Results obtained after application of Elzaki transform have been compared with solutions obtained through other prominent semi-analytic methods i.e. ADM and MSA (limited to first four iterations). The results substantiate that Elzaki transform method is not only a compatible alternate approach to other analytic methods like Laplace transform method but also simple in application once compared with methods ADM and MSA.展开更多
文摘1. Introduction It is known that the following Cauchy problem for a parabolic partial differential equation (where the values at the right boundary, u.(1, t)=v(t) are unknown and sought for) is ill-posed: the solution (v) does not depend continuously on the data (g). In order to treat the ill-posedness and develop the numerical method, one reformulates the problem as a Volterra integral equation of the first kind wish a convolution type kernel (see Sneddon [1], Carslaw and Jaeger [2])
文摘The elastodynamic problems of piezoelectric hollow cylinders and spheres under radial deformation can be transformed into a second kind Volterra integral equation about a function with respect to time, which greatly simplifies the solving procedure for such elastodynamic problems. Meanwhile, it becomes very important to find a way to solve the second kind Volterra integral equation effectively and quickly. By using an interpolation function to approximate the unknown function, two new recursive formulae were derived, based on which numerical solution can be obtained step by step. The present method can provide accurate numerical results efficiently. It is also very stable for long time calculating.
文摘In this paper, we suggest a method for solving Fredholm integral equation of the first kind based on wavelet basis. The continuous Legendre and Chebyshev wavelets of the first, second, third and fourth kind on [0,1] are used and are utilized as a basis in Galerkin method to approximate the solution of integral equations. Then, in some examples the mentioned wavelets are compared with each other.
文摘In this study, we prove the of existence of solutions of a convolution Volterra integral equation in the space of the Lebesgue integrable function on the set of positive real numbers and with the standard norm defined on it. An operator P was assigned to the convolution integral operator which was later expressed in terms of the superposition operator and the nonlinear operator. Given a ball B<sub>r</sub> belonging to the space L it was established that the operator P maps the ball into itself. The Hausdorff measure of noncompactness was then applied by first proving that given a set M∈ B r the set is bounded, closed, convex and nondecreasing. Finally, the Darbo fixed point theorem was applied on the measure obtained from the set E belonging to M. From this application, it was observed that the conditions for the Darbo fixed point theorem was satisfied. This indicated the presence of at least a fixed point for the integral equation which thereby implying the existence of solutions for the integral equation.
文摘Using the Picard iteration method and treating the involved integration by numerical quadrature formulas, we propose a numerical scheme for the second kind nonlinear Volterra integral equations. For enlarging the convergence region of the Picard iteration method, multistage algorithm is devised. We also introduce an algorithm for problems with some singularities at the limits of integration including fractional integral equations. Numerical tests verify the validity of the proposed schemes.
文摘The article is considering the third kind of nonlinear Volterra-Stieltjes integral equations with the solution by Lavrentyev regularizing operator. A uniqueness theorem was proved, and a regularization parameter was chosen. This can be used in further development of the theory of the integral equations in non-standard problems, classes in the numerical solution of third kind Volterra-Stieltjes integral equations, and when solving specific problems that lead to equations of the third kind.
基金supported by National Natural Science Foundation of China(11401347,91430104,11671157,61401255,11426193)Shandong Province Natural Science Foundation(ZR2014AP003)
文摘This paper is concerned with obtaining the approximate solution for Volterra- Hammerstein integral equation with a regular kernel. We choose the Gauss points associated with the Legendre weight function w(x) = 1 as the collocation points. The Legendre collocation discretization is proposed for Volterra-Hammerstein integral equation. We provide an error analysis which justifies that the errors of approximate solution decay exponentially in L2 norm and L^∞ norm. We give two numerical examples in order to illustrate the validity of the proposed Legendre spectral collocation method.
文摘The regularized integrodifferential equation for the first kind of Fredholm, integral equation with a complex kernel is derived by generalizing the Tikhonov regularization method and the convergence of approximate regularized solutions is discussed. As an application of the method, an inverse problem in the two-dimensional wave-making problem of a flat plate is solved numerically, and a practical approach of choosing optimal regularization parameter is given.
文摘In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space which consists of functions with vector valued in a general Banach space, and then describe the solution of these abstract boundary value problem by the abstract linear integral operator of Volterra type. We call this process the integral operator solving process.
基金supported by National Science Foundation of China(11671157,11626074)Hanshan Normal Uninversity projects(LF201404,Z16027)
文摘In this article, we study the Volterra integral equations with two kinds of delay that are proportional delay and nonproportional delay. We mainly use Chebyshev spectral collocation method to analyze them. First, we use variable transformation to transform the equation into an new equation which is defined in [-1,1]. Then, with the help of Gronwall inequality and some other lemmas, we provide a rigorous error analysis for the proposed method, which shows that the numerical error decay exponentially in L~∞ and L_(ω~c)~2-norm. In the end, we give numerical test to confirm the conclusion.
基金Project supported by the National Natural Science Foundation of China(Grant No.10271074)
文摘Abstract A new function-valued partial Padé-type approximation was introduced in the polynomial space, and an explicit determinant formula was derived by means of some orthogonal polynomials. This method can be applied to estimating surplus eigenvalues of the Fredholm integral equation of the second kind when its partial eigenvalues have been known, and at the same time, it can be applied to solving the approximating solution of the given equation.
文摘The dual integral equations of vertical forced vibration of elastic plate on an elastic half space subject to harmonic uniform distribution loading are established according to the mixed boundary-value condition. By applying Abel transformation the dual integral equations are reduced to Fredholm integral equation of the second kind which is solved numerically.
文摘In this paper, we will use the successive approximation method for solving Fredholm integral equation of the second kind using Maple18. By means of this method, an algorithm is successfully established for solving the non-linear Fredholm integral equation of the second kind. Finally, several examples are presented to illustrate the application of the algorithm and results appear that this method is very effective and convenient to solve these equations.
基金Project supported by the National Natural Science Foundation of China (No. 10472102) and Postdoctoral Foundation of China (No.20040350712)
文摘The elastodynamic problems of magneto-electro-elastic hollow cylinders in the state of axisymmetric plane strain case can be transformed into two Volterra integral equations of the second kind about two functions with respect to time. Interpolation functions were introduced to approximate two unknown functions in each time subinterval and two new recursive formulae are derived. By using the recursive formulae, numerical results were obtained step by step. Under the same time step, the accuracy of the numerical results by the present method is much higher than that by the traditional quadrature method.
基金Dr.Ali Jameel and Noraziah Man are very grateful to the Ministry of Higher Education of Malaysia for providing them with the Fundamental Research Grant Scheme(FRGS)S/O No.14188 that supported this research.
文摘Homotopy Analysis Method(HAM)is semi-analytic method to solve the linear and nonlinear mathematical models which can be used to obtain the approximate solution.The HAM includes an auxiliary parameter,which is an efficient way to examine and analyze the accuracy of linear and nonlinear problems.The main aim of this work is to explore the approximate solutions of fuzzy Volterra integral equations(both linear and nonlinear)with a separable kernel via HAM.This method provides a reliable way to ensure the convergence of the approximation series.A new general form of HAM is presented and analyzed in the fuzzy domain.A qualitative convergence analysis based on the graphical method of a fuzzy HAM is discussed.The solutions sought by the proposed method show that the HAM is easy to implement and computationally quite attractive.Some solutions of fuzzy second kind Volterra integral equations are solved as numerical examples to show the potential of the method.The results also show that HAM provides an easy way to control and modify the convergence area in order to obtain accurate solutions.
文摘In this work we suggestion new methods investigation the model Volterra type integral equation with logarithmic singularity, kernel which consisting from composition polynomial function with logarithmic singularity and function with singular point. The problem investigation this type integral equation at n = 2m reduce to problem investigate the Volterra type integral equation (1) for n = 2 the theory for which was constructed in [2]. In this work, we investigation integral equation (1) at = 2m + 1 In this case, we investigate integral equation (1) reduction it's to m integral equation type [2] φ(x)+∫xa[p1+p2 ln(x-a/t-a)]φ(t)/t-a dt=f(x)and one the following integral equation [1] ω(x)+p3∫xω(t)/ a t-adt=g(x).
文摘Integral equations theoretical parts and applications have been studied and investigated in previous works. In this work, results on investigations of the uniqueness of the Fredholm-Stiltjes linear integral equations solutions of the third kind were considered. Volterra integral equations of the first and third kind with smooth kernels were studied, and proof of the existence of a multiparameter family of solutions is described. Additionally, linear Fredholm integral equations of the first kind were investigated, for which Lavrent’ev regularizing operators were constructed.
文摘In this paper, we use the Sinc Function to solve the Fredholme-Volterra Integral Equations. By using collocation method we estimate a solution for Fredholme-Volterra Integral Equations. Finally convergence of this method will be discussed and efficiency of this method is shown by some examples. Numerical examples show that the approximate solutions have a good degree of accuracy.
基金supported by the National Natural Science Foundation of China (11901184, 11771343)the Natural Science Foundation of Hunan Province (2020JJ5025)。
文摘In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytically derive a comparison theorem for them and for the continuous equilibrium consumption process. These continuous equilibrium consumption processes can be described by the solutions to this class of ABSVIE with jumps.Motivated by this, a class of dynamic risk measures induced by ABSVIEs with jumps are discussed.
文摘Volterra type integral equations have diverse applications in scientific and other fields. Modelling physical phenomena by employing integral equations is not a new concept. Similarly, extensive research is underway to find accurate and efficient solution methods for integral equations. Some of noteworthy methods include Adomian Decomposition Method (ADM), Variational Iteration Method (VIM), Method of Successive Approximation (MSA), Galerkin method, Laplace transform method, etc. This research is focused on demonstrating Elzaki transform application for solution of linear Volterra integral equations which include convolution type equations as well as one system of equations. The selected problems are available in literature and have been solved using various analytical, semi-analytical and numerical techniques. Results obtained after application of Elzaki transform have been compared with solutions obtained through other prominent semi-analytic methods i.e. ADM and MSA (limited to first four iterations). The results substantiate that Elzaki transform method is not only a compatible alternate approach to other analytic methods like Laplace transform method but also simple in application once compared with methods ADM and MSA.