期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Static and Thermal Analysis of Aluminium (413,390,384 and 332) Piston Using Finite Element Method
1
作者 Offei David Inusah Jacob Kwaku Nkrumah Vincent Akolbire Atindana 《Modeling and Numerical Simulation of Material Science》 2024年第1期1-38,共38页
The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Aut... The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Autodesk Inventor 2017 software. The modelled piston was then imported into Ansys for further analysis. Static structural and thermal analysis were carried out on the pistons of the four different materials namely: Al 413 alloy, Al 384 alloy, Al 390 alloy and Al332 alloy to determine the total deformation, equivalent Von Mises stress, maximum shear stress, and the safety factor. The results of the study revealed that, aluminium 332 alloy piston deformed less compared to the deformations of aluminium 390 alloy piston, aluminium 384 alloy piston and aluminium 413 alloy piston. The induced Von Mises stresses in the pistons of the four different materials were found to be far lower than the yield strengths of all the materials. Hence, all the selected materials including the implementing material have equal properties to withstand the maximum gas load. All the selected materials were observed to have high thermal conductivity enough to be able to withstand the operating temperature in the engine cylinders. 展开更多
关键词 von Mise stress Total deformation Aluminium alloy Thermal analysis. PISTON Static structural Heat fux
下载PDF
Analytical Research of Temperature Distribution and Thermal Stresses within Circular Micro-hotplates
2
作者 于慧俐 李绪泉 胡松涛 《Journal of Donghua University(English Edition)》 EI CAS 2016年第6期997-1006,共10页
Micro-hotplate(MHP) technology is one key part in the manufacturing of gas sensors.The pursuit of analytical solutions for the temperature distribution and also thermal stresses within the MHP is of intrinsic scientif... Micro-hotplate(MHP) technology is one key part in the manufacturing of gas sensors.The pursuit of analytical solutions for the temperature distribution and also thermal stresses within the MHP is of intrinsic scientific interest.In this study,analytical solutions for the temperature field,and both radial and tangential stresses and von Mises stress for circular MHP were obtained.Two geometries were considered:one had a circular heater at the center and the other had a circular heater at the center and an annular heater within the membrane part.Internal heat generation was incorporated in the energy equation for the MHP and different values of convection heat transfer coefficient were used at the upper and lower surfaces of the MHP.It has been shown that the MHP with two heaters can provide more uniform temperature field compared with the MHP with one heater.The main objective of this work is to provide an exact analytical solution for thermal stresses within the circular micro-heater with a simple geometry as a benchmark,from mathematical point of view,against which the accuracy of new numerical schemes can be checked.To make sure that the analytical procedure is correct,the analytical results are checked against numerical solutions derived from finite element simulation.Since the analytical models for the temperature field and especially for the thermal stresses of MHP are seldom investigated in the literature,the obtained results are believed to facilitate the design and performance evaluation of MHPs as well. 展开更多
关键词 micro-hotplate(MHP) temperature distribution thermal analysis von mises stress analytical solutions numerical solution
下载PDF
The Topology Optimization Under the Static Loads
3
作者 LI Zhibin 《International Journal of Plant Engineering and Management》 2023年第4期249-254,共6页
The method of the structural topology optimization is often used to design machine in the early stage of the mechanical design.And one mechanical structure use the topology design to produce a new still and lightweigh... The method of the structural topology optimization is often used to design machine in the early stage of the mechanical design.And one mechanical structure use the topology design to produce a new still and lightweight assembly. 展开更多
关键词 mechanical design FEA von mises stress COMPARISON topology optimization
下载PDF
Finite Element Analysis of the Base
4
作者 YANG Shulong 《International Journal of Plant Engineering and Management》 2023年第2期123-128,共6页
This paper describes the structure of the base,on which two working arms are installed simultaneously.To ensure structura safety,the fatigue failure analysis and statics analysis are finished using the finite element ... This paper describes the structure of the base,on which two working arms are installed simultaneously.To ensure structura safety,the fatigue failure analysis and statics analysis are finished using the finite element method.The calculation can make sure that the structure of the base meets the design standard,and the material can be reduced one grade. 展开更多
关键词 finite element method S⁃N curve vonmises stress fatigue failure
下载PDF
Hip Fracture Risk Assessment Based on Different Failure Criteria Using QCT-Based Finite Element Modeling
5
作者 Hossein Bisheh Yunhua Luo Timon Rabczuk 《Computers, Materials & Continua》 SCIE EI 2020年第5期567-591,共25页
Precise evaluation of hip fracture risk leads to reduce hip fracture occurrence in individuals and assist to check the effect of a treatment.A subject-specific QCT-based finite element model is introduced to evaluate ... Precise evaluation of hip fracture risk leads to reduce hip fracture occurrence in individuals and assist to check the effect of a treatment.A subject-specific QCT-based finite element model is introduced to evaluate hip fracture risk using the strain energy,von-Mises stress,and von-Mises strain criteria during the single-leg stance and the sideways fall configurations.Choosing a proper failure criterion in hip fracture risk assessment is very important.The aim of this study is to define hip fracture risk index using the strain energy,von Mises stress,and von Mises strain criteria and compare the calculated fracture risk indices using these criteria at the critical regions of the femur.It is found that based on these criteria,the hip fracture risk at the femoral neck and the intertrochanteric region is higher than other parts of the femur,probably due to the larger amount of cancellous bone in these regions.The study results also show that the strain energy criterion gives more reasonable assessment of hip fracture risk based on the bone failure mechanism and the von-Mises strain criterion is more conservative than two other criteria and leads to higher estimate of hip fracture risk indices. 展开更多
关键词 Hip fracture risk finite element model strain energy von mises stress von mises strain
下载PDF
Simulation of Lumbar Spinal Stenosis Using the Finite Element Method
6
作者 Din Prathumwan Inthira Chaiya Kamonchat Trachoo 《Computers, Materials & Continua》 SCIE EI 2021年第12期3645-3657,共13页
Lumbar spine stenosis(LSS)is a narrowing of the spinal canal that results in pressure on the spinal nerves.This orthopedic disorder can cause severe pain and dysfunction.LSS is a common disabling problem amongst elder... Lumbar spine stenosis(LSS)is a narrowing of the spinal canal that results in pressure on the spinal nerves.This orthopedic disorder can cause severe pain and dysfunction.LSS is a common disabling problem amongst elderly people.In this paper,we developed a finite element model(FEM)to study the forces and the von Mises stress acting on the spine when people bend down.An artificial lumbar spine(L3)was generated from CT data by using the FEM,which is a powerful tool to study biomechanics.The proposed model is able to predict the effect of forces which apply to the lumbar spine.In addition,FEM allows us to investigate the tests into the lumbar spine instead of applying the tests to the real spine in humans.The proposed model is highly accurate and provides precise information about the lumbar spine(L3).We investigate the behavior of humans in daily life which effects to the lumbar spine in a normal person and a patient with LSS.The computational results revealed high displacement levels around the spinal canal and lower displacement levels in the spinal body when bending down.The total displacement of the axial load in a normal person was higher when compared with patients with LSS.Higher degree bends resulted in a lower total displacement when compared with lower degree bends,while the von Mises stress decreased as the bending degree increased. 展开更多
关键词 Lumbar spinal stenosis finite element method mathematical model von mises stress
下载PDF
Comparative Study of Different Materials with Al-Sic for Engine Valve Guide by Using FEM
7
作者 Hemendra Kumar Srivastva Arurendra Singh Chauhan +3 位作者 Manmohan Kushwaha Amaan Raza Prashantkr Bhardwaj Vaibhav Raj 《World Journal of Engineering and Technology》 2016年第2期238-251,共14页
In this work, an effort has been designed to raise the reliability of engine using Al-Sic composites with other alternatively materials for the engine valve guides. Aluminum matrix composites have found the most suita... In this work, an effort has been designed to raise the reliability of engine using Al-Sic composites with other alternatively materials for the engine valve guides. Aluminum matrix composites have found the most suitable inside automotive, aerospace and aircraft industries and contain the greatest promise for future year’s growth. The finite element analysis of the Al-Sic composite with Titanium alloy (Ti-834), Copper Nickel Silicon alloys (CuNi3Si), and aluminum bronze alloy as an alternative material for engine valve guide was done using Ansys 13.0 software. The stress analysis of engine valve guide under the different pressure and temperature is considered, the pressure is taken as from 10 MPa to 100 MPa with different temperatures varying from 600℃ to 650℃. The temperature, principal stress and principal strain distribution on the entire surface area of the engine valve guide were obtained. The stresses were observed to be well below the permitted stress for all the materials but the Al-Sic composites found the most suitable one. Valve guide is modeled in pro-engineer software and analysis is carried out in Ansys 13.0. The deformations and stresses induced due to structural and thermal loading is illustrated and discussed. 展开更多
关键词 Valve Guide Composite Materials FEM DEFORMATION von mises stress
下载PDF
3D Model Simulating the Hydro-mechanical State of Unsaturated and Deformable Material during Hot air Drying
8
作者 Lamine Hassini Sadoth Sandoval Torres 《Hydro Science & Marine Engineering》 2020年第1期27-32,共6页
A three dimensional model to predict the hydro-mechanical state of unsaturated and deformable material during hot air drying has been proposed.The material viscoelastic behaviour was formulated using Bishop’s effecti... A three dimensional model to predict the hydro-mechanical state of unsaturated and deformable material during hot air drying has been proposed.The material viscoelastic behaviour was formulated using Bishop’s effective stress theory for partially saturated material using the liquid saturation as the Bishop parameter.The hydro-thermal and mechanical equations were coupled by the fluid pressure and the solid matter velocity.The model was applied to a deformable material(innovative clay-cellulose fibers composite)subjected to convective drying.A generalized Maxwell model with five elements,whose parameters were measured experimentally and correlated to water content was used to describe the material’s viscoelastic behavior.The hydro-thermal part of the proposed model was validated on the basis of a comparison of experimental and simulated drying rate curves.The Von Mises stress was simulated and compared to the experimental tensile strength in order to predict the time and the region of material failure.For a drying process at 95°C,the region of failure risk was identified.The failure may occur on the lateral surface of the slab in contact with air at a drying time of 2.5h. 展开更多
关键词 Modeling and simulation Cellulosic-clay composite Convective drying von mises stress Material failure
下载PDF
Application of the finite element method for evaluating the stress distribution in buried damaged polyethylene gas pipes
9
作者 R.Khademi-Zahedi 《Underground Space》 SCIE EI 2019年第1期59-71,共13页
During the loading process,buried gas pipes can experience severe stresses due to soil-structure interaction,the presence of traffic load,the soil’s column weight,daily and/or seasonal temperature changes and uniform... During the loading process,buried gas pipes can experience severe stresses due to soil-structure interaction,the presence of traffic load,the soil’s column weight,daily and/or seasonal temperature changes and uniform internal pressure.In this research,the finite element method is employed to evaluate the behavior of buried Medium Density Polyethylene(MDPE)pipes which have been subjected to damage at the pipe crown.The modeled pipe damage ranges from a very small circular hole to a large circular hole and elliptic holes with various minor to major diameter ratios,a/b,to simulate circular to crack-shaped defects.The computer simulation and stress analyses were performed using the ANSYS software finite element package.The stress distribution around the defect was determined under the aforementioned mechanical and thermal loading conditions.Then,the maximum values of Von Mises stresses in the damaged buried PE pipes,which were evaluated by finite element solution,were compared with their corresponding reduced strength for safe operation with a life expectancy of fifty years.Based on the results,the maximum Von Mises stress values in the defective buried polyethylene gas pipeline are significantly above the pipe strength limit at 35℃.The previously mentioned stress values increase with the following factors:temperature increase,increase in circular hole diameter and decrease in elliptic hole diameter ratio(a/b).The maximum stress in the damaged PE pipe is due to the simultaneous loading effects of soil column weight,internal pressure,vehicle wheel load and pipe temperature increase.Additionally,the novel finite element models and stress plots for the buried damaged pipe and the pipe material allowable strength will be used to investigate the correct repair method for the damaged gas pipeline and to choose the best patch arrangement which will assure a safe repair. 展开更多
关键词 Buried gas distribution pipes Circular and elliptical defects Medium Density Polyethylene(MDPE) von mises stress Finite element method Temperature variation
原文传递
Finite Element Method Analysis of the Stress for Line Pipe with Corrode Groove During Outdoor Storage 被引量:8
10
作者 Zhuanzhao YANG Daoxin LIU Xiaohua ZHANG 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2013年第2期188-198,共11页
The basic principle of corrode groove on outside of steel pipe during storage was analyzed in this paper, namely the water film on the contacted surface of steel pipe, which gathered from humidity in the air, rain or ... The basic principle of corrode groove on outside of steel pipe during storage was analyzed in this paper, namely the water film on the contacted surface of steel pipe, which gathered from humidity in the air, rain or gel, and the suspended particles in air, and the corrosive composition, such as SO2, CO2, O2 and NaCI, in addition to the inhomogeneity of the organization and composition, which lead to the corrosion cell reaction, so that cause the corrosion initial from the contact surface of the between steel pipes, so as to form the corrosion groove. At the same time, the corrosion groove with depth of 0.125t (t pipe wall thickness) on the pipe of φ 1016 mm×21 mm ×70 API SPEC 5L was simulated using the FEM (finite element method), and the stress and strain distribution of the defect area near corrosion groove were solved at the inner pressure of 12 MPa, 10 MPa, 8 MPa, 6 MPa, 4 MPa and 2 MPa, respectively, which showed that no matter the pressure values were, the maximum stress and strain were lied at the bottom of corrosion defects groove and were in good linear relationship with the internal pressure increasing from 2 MPa to 6 MPa. When the internal pres- sures were greater than 6 MPa, they felled into the nonlinear model and to be yielded or even to be destroyed. In addition, the residual strength and the limit operation pressure of the corrode pipe with the defects groove of 0.125t were calculated or simulated according to the theoretical calculation, the finite element method based on the stress, the finite element method based on strain, DNV-RP-F101, ASME B31G and experimental methods respectively. The results showed that the residual strength and the limit operation pressure of the defective parts solved by the finite element method based on stress were 424 MPa, and 15.34 MPa, respectively, which was very close to that of experimental method, the residual strength was 410 MPa and the limit operation pressure 14.78 MPa. Besides, the results also showed that it was feasible and effective to simulate the residual strength of the structure with corrosion defects using the finite element method. 展开更多
关键词 Finite element methods (FEM) STORAGE Corrode Groove stress analysis von mises equivalent stress
原文传递
Insights into the tribological behavior of choline chloride-urea and choline chloride-thiourea deep eutectic solvents
11
作者 Yuting LI Yuan LI +5 位作者 Hao LI Xiaoqiang FAN Han YAN Meng CAI Xiaojun XU Minhao ZHU 《Friction》 SCIE EI CAS CSCD 2023年第1期76-92,共17页
Deep eutectic solvents(DESs)have been considered as novel and economic alternatives to traditional lubricants because of their similar physicochemical performance.In this study,choline chloride(ChCl)DESs were successf... Deep eutectic solvents(DESs)have been considered as novel and economic alternatives to traditional lubricants because of their similar physicochemical performance.In this study,choline chloride(ChCl)DESs were successfully synthesized via hydrogen-bonding networks of urea and thiourea as the hydrogen bond donors(HBDs).The as-synthesized ChCl-urea and ChCl-thiourea DESs had excellent thermal stability and displayed good lubrication between steel/steel tribo-pairs.The friction coefficient and wear rate of ChCl-thiourea DES were 50.1%and 80.6%,respectively,lower than those of ChCl-urea DES for GCr15/45 steel tribo-pairs.However,for GCr15/Q45 steel,ChCl-urea DES decreased the wear rate by 85.0%in comparison to ChCl-thiourea DES.Under ChCl-thiourea DES lubrication,the tribo-chemical reaction film composed of FeS formed at the interfaces and contributed to low friction and wear.However,under high von Mises stress,the film could not be stably retained and serious wear was obtained through direct contact of friction pairs.This illustrated that the evolution of the tribo-chemical reaction film was responsible for the anti-friction and anti-wearproperties of the DESs. 展开更多
关键词 deep eutectic solvents(DESs) tribo-chemical film von mises stress lubrication mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部