A numerical simulation and an experimental study on vortex-induced motion(VIM) of a new type of deep draft multi-columns floating drilling production, storage and offloading(FDPSO) are presented in this paper. The...A numerical simulation and an experimental study on vortex-induced motion(VIM) of a new type of deep draft multi-columns floating drilling production, storage and offloading(FDPSO) are presented in this paper. The main dimension, the special variable cross-section column and the cabin arrangement of the octagonal pontoon are introduced based on the result. The numerical simulation is adapted to study the effects of current incidence angles and reduced velocities on this platform’s sway motion response. The 300 m water depth equivalent truncated mooring system is adopted for the model tests. The model tests are carried out to check the reliability of numerical simulation. The results consist of surge, sway and yaw motions, as well as motion trajectories. The maximum sway amplitudes for different types of offshore platform is also studied. The main results show that the peak frequencies of sway motion under different current incidence angles and reduced velocities vary around the natural frequency. The analysis result of flow field indicates that the change of distribution of vortex in vertical presents significant influences on the VIM of platform. The trend of sway amplitude ratio curve of this new type FDPSO differs from the other types of platform. Under 45° current incidence angle, the sway amplitude of this new type of FDPSO is much smaller than those of other types of offshore platform at 4.4 ≤ V;≤ 8.9. The typical ‘8’ shape trajectory does not appear in the platform’s motion trajectories.展开更多
A phenomenological model for predicting the vortex-induced motion (VIM) of a single-column platform with non- linear stiffness has been proposed. The VIM model is based on the couple of the Duffing-van der Pol oscilla...A phenomenological model for predicting the vortex-induced motion (VIM) of a single-column platform with non- linear stiffness has been proposed. The VIM model is based on the couple of the Duffing-van der Pol oscillators and the motion equations with non-linear terms. The model with liner stiffness is presented for comparison and their results are compared with the experiments in order to calibrate the model. The computed results show that the predicted VIM amplitudes and periods of oscillation are in qualitative agreements with the experimental data. Compared with the results with linear stiffness, it is found that the application of non-linear stiffness causes the significant reductions in the in-line and transverse motion amplitudes. Under the non-linear stiffness constraint, the lock-in behavior is still identified at 8<Ur<15, and the trajectories of the VIM on the xy plane with eight-figure patterns are maintained. The results with different non-linear geometrically parameters show that both in-line and transverse non-linear characteristics can significantly affect the predict in-line and transverse motion amplitudes. Furthermore, the computed results for different aspect ratios indicate that the in-line and transverse motion amplitudes increase with the growth of aspect ratio, and the range of lock-in region is enlarged for the large aspect ratio.展开更多
A Deep Draft Semi-submersible (DDS) under certain flow conditions could be subjected to Vortex-Induced Motions (VIM), which significantly influences the loads on and life fatigue of the moorings and the risers. To...A Deep Draft Semi-submersible (DDS) under certain flow conditions could be subjected to Vortex-Induced Motions (VIM), which significantly influences the loads on and life fatigue of the moorings and the risers. To investigate the VIM of a DDS with four rectangular section columns in waves coupled with a uniform current, a numerical study using the computational fluid dynamics (CFD) method was conducted. The issues of the VIM of multi-column floaters can be con','eniently converted to the issues of oscillating cylinders in fluid cross flows. This paper looks into the CFD numerical simulation of infinite cylinders having rectangular sections in a two-dimensional sinusoidal time- dependent flow field coupled with a uniform current. The resulted hydrodynamic forces and motion responses in different oscillatory flows plus currents both aligned in the same direction for the incidence of 135° of the DDS relative to the flow are compared with the ones in current only cases. The results show that the VIM response of this geometric arrangement of a DDS with four rectangular columns in a current combined with oscillatory flows is more evident than that in the current only case. The oscillatory flows and waves have the significant influence on the VIM response, forces and trajectory, in-plane motions of the DDS.展开更多
In this paper,numerical simulation is conducted via our in-house solver,vim-FOAM-SJTU,developed on open-source software,OpenFOAM.Flow around static rigid cylinders and elastically mounted rigid cylinder constrained to...In this paper,numerical simulation is conducted via our in-house solver,vim-FOAM-SJTU,developed on open-source software,OpenFOAM.Flow around static rigid cylinders and elastically mounted rigid cylinder constrained to free stream with free end are numerically investigated.Some significant conclusions are made by analyzing the different results between cases with and without free end.The turbulence model is implemented with a shear stress transport-based(SST-based)improved delayed detached eddy simulation(IDDES)approach in the vim-FOAM-SJTU.Firstly,The paper starts with the application of the vim-FOAM-SJTU solver to flow past fixed cylinder with free end at Reynolds number 43000.The numerical results are compared with experimental data.Comparison are satisfactory which implies the validity and accuracy of the current computational fluid dynamics(CFD)solver.The flow visualization in the vicinity of free-end is discussed.Subsequently,the solver is utilized to simulate the free end effect associated with the VIM of a cylinder submerged in current.The motion responses under different inflow velocities are studied.The relationship between transverse motion frequency,in-line motion frequency is discussed.Lastly,the effect of the free end on the vortex of the wake field is analyzed by comparing the 3-D vorticity diagrams of the free end cylinder.The responses of circular cylinder with or without free end are compared.展开更多
采用有限体积法对圆形四立柱涡激运动进行数值模拟。圆形四立柱涡激运动系统简化为两自由度的质量-弹簧-阻尼模型,引入雷诺平均应力模型求解不可压缩粘性Navier-Stokes方程,并结合SST k-w湍流模型对低质量比弹性支撑的圆形四立柱涡激运...采用有限体积法对圆形四立柱涡激运动进行数值模拟。圆形四立柱涡激运动系统简化为两自由度的质量-弹簧-阻尼模型,引入雷诺平均应力模型求解不可压缩粘性Navier-Stokes方程,并结合SST k-w湍流模型对低质量比弹性支撑的圆形四立柱涡激运动进行模拟。将四阶Runge-Kutta代码嵌入用户自定义函数UDF(User Defined Function)中求解四立柱的动力响应,采用动网格技术来实现立柱和流场之间的耦合。研究发现,圆形四立柱涡激运动流向和横向振幅随着折合速度的增大而先增大后减小,并出现幅值跳跃现象,跳跃点在折合速度9.0处。横向振幅最大值出现在折合速度为8.0时,大小为1.99D,远大于流向振幅最大值0.26D。圆形四立柱流向运动平衡位置随折合速度增大并非一直增大,在折合速度9.0时突然下降随后增大。圆形四立柱涡激运动出现了明显的频率锁定现象,锁定区间为5.0~8.0。当系统走过锁定系统后,流向幅值和流向幅值迅速减小。最后对不同折合速度下圆形四立柱运动轨迹和尾涡脱落模式进行讨论分析。展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.51779109)the Natural Science Foundation of Jiangsu Province(Grant No.BK20171306)
文摘A numerical simulation and an experimental study on vortex-induced motion(VIM) of a new type of deep draft multi-columns floating drilling production, storage and offloading(FDPSO) are presented in this paper. The main dimension, the special variable cross-section column and the cabin arrangement of the octagonal pontoon are introduced based on the result. The numerical simulation is adapted to study the effects of current incidence angles and reduced velocities on this platform’s sway motion response. The 300 m water depth equivalent truncated mooring system is adopted for the model tests. The model tests are carried out to check the reliability of numerical simulation. The results consist of surge, sway and yaw motions, as well as motion trajectories. The maximum sway amplitudes for different types of offshore platform is also studied. The main results show that the peak frequencies of sway motion under different current incidence angles and reduced velocities vary around the natural frequency. The analysis result of flow field indicates that the change of distribution of vortex in vertical presents significant influences on the VIM of platform. The trend of sway amplitude ratio curve of this new type FDPSO differs from the other types of platform. Under 45° current incidence angle, the sway amplitude of this new type of FDPSO is much smaller than those of other types of offshore platform at 4.4 ≤ V;≤ 8.9. The typical ‘8’ shape trajectory does not appear in the platform’s motion trajectories.
基金supported by the National Natural Science Foundation of China(Grant No.51679138)the 1000 Young Talent Program(Grant No.15Z127060020)the National Basic Research Program of China(973 Program,Grant Nos.2015CB251203 and 2013CB036103)
文摘A phenomenological model for predicting the vortex-induced motion (VIM) of a single-column platform with non- linear stiffness has been proposed. The VIM model is based on the couple of the Duffing-van der Pol oscillators and the motion equations with non-linear terms. The model with liner stiffness is presented for comparison and their results are compared with the experiments in order to calibrate the model. The computed results show that the predicted VIM amplitudes and periods of oscillation are in qualitative agreements with the experimental data. Compared with the results with linear stiffness, it is found that the application of non-linear stiffness causes the significant reductions in the in-line and transverse motion amplitudes. Under the non-linear stiffness constraint, the lock-in behavior is still identified at 8<Ur<15, and the trajectories of the VIM on the xy plane with eight-figure patterns are maintained. The results with different non-linear geometrically parameters show that both in-line and transverse non-linear characteristics can significantly affect the predict in-line and transverse motion amplitudes. Furthermore, the computed results for different aspect ratios indicate that the in-line and transverse motion amplitudes increase with the growth of aspect ratio, and the range of lock-in region is enlarged for the large aspect ratio.
基金supported by the National Natural Science Foundation of China(Grant No.51279104)a Research Project on High-Technology Ships by the Ministry of Industry and Information Technology
文摘A Deep Draft Semi-submersible (DDS) under certain flow conditions could be subjected to Vortex-Induced Motions (VIM), which significantly influences the loads on and life fatigue of the moorings and the risers. To investigate the VIM of a DDS with four rectangular section columns in waves coupled with a uniform current, a numerical study using the computational fluid dynamics (CFD) method was conducted. The issues of the VIM of multi-column floaters can be con','eniently converted to the issues of oscillating cylinders in fluid cross flows. This paper looks into the CFD numerical simulation of infinite cylinders having rectangular sections in a two-dimensional sinusoidal time- dependent flow field coupled with a uniform current. The resulted hydrodynamic forces and motion responses in different oscillatory flows plus currents both aligned in the same direction for the incidence of 135° of the DDS relative to the flow are compared with the ones in current only cases. The results show that the VIM response of this geometric arrangement of a DDS with four rectangular columns in a current combined with oscillatory flows is more evident than that in the current only case. The oscillatory flows and waves have the significant influence on the VIM response, forces and trajectory, in-plane motions of the DDS.
基金supported by the National Natural Science Foundation of China(Grant Nos.52131102,51909160 and 51879159)the National Key Research and Development Program of China(Grant No.2019YFB1704200).
文摘In this paper,numerical simulation is conducted via our in-house solver,vim-FOAM-SJTU,developed on open-source software,OpenFOAM.Flow around static rigid cylinders and elastically mounted rigid cylinder constrained to free stream with free end are numerically investigated.Some significant conclusions are made by analyzing the different results between cases with and without free end.The turbulence model is implemented with a shear stress transport-based(SST-based)improved delayed detached eddy simulation(IDDES)approach in the vim-FOAM-SJTU.Firstly,The paper starts with the application of the vim-FOAM-SJTU solver to flow past fixed cylinder with free end at Reynolds number 43000.The numerical results are compared with experimental data.Comparison are satisfactory which implies the validity and accuracy of the current computational fluid dynamics(CFD)solver.The flow visualization in the vicinity of free-end is discussed.Subsequently,the solver is utilized to simulate the free end effect associated with the VIM of a cylinder submerged in current.The motion responses under different inflow velocities are studied.The relationship between transverse motion frequency,in-line motion frequency is discussed.Lastly,the effect of the free end on the vortex of the wake field is analyzed by comparing the 3-D vorticity diagrams of the free end cylinder.The responses of circular cylinder with or without free end are compared.
文摘采用有限体积法对圆形四立柱涡激运动进行数值模拟。圆形四立柱涡激运动系统简化为两自由度的质量-弹簧-阻尼模型,引入雷诺平均应力模型求解不可压缩粘性Navier-Stokes方程,并结合SST k-w湍流模型对低质量比弹性支撑的圆形四立柱涡激运动进行模拟。将四阶Runge-Kutta代码嵌入用户自定义函数UDF(User Defined Function)中求解四立柱的动力响应,采用动网格技术来实现立柱和流场之间的耦合。研究发现,圆形四立柱涡激运动流向和横向振幅随着折合速度的增大而先增大后减小,并出现幅值跳跃现象,跳跃点在折合速度9.0处。横向振幅最大值出现在折合速度为8.0时,大小为1.99D,远大于流向振幅最大值0.26D。圆形四立柱流向运动平衡位置随折合速度增大并非一直增大,在折合速度9.0时突然下降随后增大。圆形四立柱涡激运动出现了明显的频率锁定现象,锁定区间为5.0~8.0。当系统走过锁定系统后,流向幅值和流向幅值迅速减小。最后对不同折合速度下圆形四立柱运动轨迹和尾涡脱落模式进行讨论分析。