期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Vorticity Budget Investigation of a Simulated Long-Lived Mesoscale Vortex in South China 被引量:7
1
作者 陈敏 郑永光 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第6期928-940,共13页
A vorticity budget investigation is performed using the output data from a numerical simulation of a typical MCV (mesoscale convectively generated votex) case in South China. Results suggest that the divergence caus... A vorticity budget investigation is performed using the output data from a numerical simulation of a typical MCV (mesoscale convectively generated votex) case in South China. Results suggest that the divergence caused by convection in the low troposphere is the main producer of positive vorticity, while vertical vorticity transferred by the tilting term from the horizontal vorticity compensates the upward output of cyclonic vorticity. Scale analyses of the vorticity equation suggest that the advection of planetary vorticity can be neglected owing to the low latitude, which is di?erent from the larger scale systems in high latitude areas. In addition, the distribution of relative vorticity tendency on pressure level is not uniform. A vortex will move along the vector from the negative to the positive vorticity tendency region. The mechanism of the phenomenon—that nearly all of the convectively ascending region is located southward/southeastward of the vortex center—is also discussed. Convergence with regard to latent heat release would be in favor of the spin-up of meso-vortex, however, the horizontal vorticity caused by wind shear is tilted by vertical motion due to convection. Consequently, the negative and positive vorticity tendencies are located symmetrically about the convective center, which suggests that the vortex southward movement is dynamically driven by convection. 展开更多
关键词 vorticity budget mesoscale convectively generated votex mesoscale convective system
下载PDF
Analysis of Forecast Failure of a Regional Rainstorm in Qinghai
2
作者 Qin GUAN Chengzhen SHI +1 位作者 Bianbian ZHANG Qingping LI 《Meteorological and Environmental Research》 CAS 2022年第3期58-66,70,共10页
Based on the ground observation, ERA5 and other data, the regional rainstorm that occurred in northeastern Qinghai on the night of August 28, 2020 was analyzed. The results show that this precipitation occurred in the... Based on the ground observation, ERA5 and other data, the regional rainstorm that occurred in northeastern Qinghai on the night of August 28, 2020 was analyzed. The results show that this precipitation occurred in the climate background of relatively high temperature, high humidity and extreme low pressure, and the precipitation process was divided into warm-area precipitation before the front and frontal precipitation, among which the warm-area precipitation was dominant, and it was a regional warm-area rainstorm. The global models, mesoscale models and forecasters as important operational reference all failed to make effective forecasts or prompts for the warm-area precipitation before the front in advance(24 or 12 h), the predicted precipitation was obviously small, and the predicted frontal precipitation by the models were obviously large. The western low-level meso-β-scale wind direction convergence system moving eastwards encountered the high-humidity area at the front of the meso-γ-scale wind speed convergence system to trigger this regional warm-area rainstorm. From the analysis of the mesoscale convergent system based on the vorticity budget equation, it is found that different terms played different roles in the process of warm-area rainstorm. The advective term dominated before the appearance of precipitation, which was favorable for the generation of mesoscale eddies. During the precipitation period, the torsion term and the convergence term were dominant. The torsion term was beneficial to the conversion of horizontal vorticity to vertical vorticity and the enhancement of precipitation intensity. Its maximum was generated 1-2 h earlier than the heavy precipitation. In the later period of precipitation, the convergence term was dominant, which was beneficial to the maintenance of precipitation. In the early stage of precipitation, the apparent heat source was located behind the apparent water vapor sink, which was conducive to the increase in the thickness of the heating column, and the precipitation intensity gradually increased. During the occurrence of heavy precipitation, the apparent heat source and the apparent water vapor sink basically coincided, and the latent heat released by condensation strengthened the upward movement, so that precipitation intensity increased. In this process, the water vapor mainly came from the southeast of the plateau(southwest airflow), followed by the plateau slope area(southeast airflow). During this regional warm-area rain that was wrongly predicted, the extreme minimum pressure, the torsional term in the vorticity budget equation and the abnormal water vapor transport have certain indications for the warm-area rainstorm. 展开更多
关键词 Extreme air pressure Warm-area rainstorm vorticity budget equation Apparent heat source Apparent water vapor sink
下载PDF
A Study on a Heavy Rainfall Event Triggered by an Inverted Typhoon Trough in Shandong Province 被引量:11
3
作者 赵宇 崔晓鹏 王建国 《Acta meteorologica Sinica》 SCIE 2009年第4期468-484,共17页
A heavy rainfall event that occurred in Shandong Province in 26 28 August 2004 was caused mainly by Typhoon Acre and cold air activities related to a westerly trough. The event was triggered by an inverted typhoon tro... A heavy rainfall event that occurred in Shandong Province in 26 28 August 2004 was caused mainly by Typhoon Acre and cold air activities related to a westerly trough. The event was triggered by an inverted typhoon trough, which was closely associated with the intensification of the low-level southeasterly flow and the northward transport of heat and momentum in the periphery of the typhoon low. A numerical simulation of this event is performed using the nonhydrostatic mesoscale model MM5 with two-way interactive and triply-nested grids, and the structure of the inverted typhoon trough is studied. Furthermore, the formation and development mechanism of the inverted typhoon trough and a mesoscale vortex are discussed through a vorticity budget analysis. The results show that the heavy rainfall was induced by the strong convergence between the strong and weak winds within the inverted typhoon trough. Dynamic effects of the low-level jet and the diabatic heating of precipitation played an important role in the development of the inverted typhoon trough and the formation of the mesoscale vortex. The vorticity budget analysis suggests that the divergence term in the low troposphere, the horizontal advection term, and the convection term in the middle troposphere were main contributors to positive vorticity. Nonetheless, at the same pressure level, the effect of the divergence term and that of the adveetion term were opposite to each other. In the middle troposphere, the vertical transport term made a positive contribution while the tilting term made a negative contribution, and the total vorticity tendency was the net result of their counteractions. It is found that the change tendency of the relative vorticity was not uniform horizontally. A strong positive vorticity tendency occurred in the southeast of the mesoscale vortex, which is why the heavy rainfall was concentrated there. The increase of positive vorticity in the low (upper) troposphere was caused by horizontal convergence (upward transport of vorticity from the lower troposphere). Therefore, the development of the inverted typhoon trough and the formation of the mesoscale vortex were mainly attributed to the vorticity generated in the low troposphere, and also the vertical transport of vorticity from the low and middle troposphere. 展开更多
关键词 heavy rainfall event landing typhoon inverted typhoon trough vorticity budget
原文传递
A Numerical Study of the Evolution of a Mesoscale Convective Vortex on the Meiyu Front 被引量:1
4
作者 王金鑫 潘益农 王石成 《Acta meteorologica Sinica》 SCIE 2013年第6期889-909,共21页
The Advanced Research WRF(Weather Research and Forecasting) model is used to simulate the evolution of a mesoscale convective vortex(MCV) that formed on the Meiyu front and lasted for more than two days. The simul... The Advanced Research WRF(Weather Research and Forecasting) model is used to simulate the evolution of a mesoscale convective vortex(MCV) that formed on the Meiyu front and lasted for more than two days. The simulation is used to investigate the underlying reasons for the genesis, intensification, and vertical expansion of the MCV. This MCV is of a type of mid-level MCV that often develops in the stratiform regions of mesoscale convective systems. The vortex strengthened and reached its maximum intensity and vertical extent(from the surface to upper levels) when secondary organized convection developed within the mid-level circulation. The factors controling the evolution of the kinetic and thermal structure of the MCV are examined through an analysis of the budgets of vorticity, temperature, and energy. The evolution of the local Rossby radius of deformation reveals the interrelated nature of the MCV and its parent mesoscale convective system. 展开更多
关键词 mesoscale convective vortex vorticity budget temperature budget energy budget Rossby deformation radius
原文传递
A semi-idealized modeling study on the long-lived eastward propagating mesoscale convective system over the Tibetan Plateau
5
作者 Shenming FU Zi MAI +4 位作者 Jianhua SUN Wanli LI Qi ZHONG Jiaren SUN Yuanchun ZHANG 《Science China Earth Sciences》 SCIE EI CSCD 2021年第11期1996-2014,共19页
Based on a 16-warm-season statistical study on the mesoscale convective systems(MCSs)that were generated over the Tibetan Plateau(TP),11 long-lived eastward propagating MCSs of the same type were selected for a compos... Based on a 16-warm-season statistical study on the mesoscale convective systems(MCSs)that were generated over the Tibetan Plateau(TP),11 long-lived eastward propagating MCSs of the same type were selected for a composite semiidealized simulation and a corresponding no-latent-heating sensitivity run by using the Weather Research and Forecasting(WRF)model.Common evolutionary features and associated mechanisms of this type of long-lived eastward propagating MCS were investigated.Main results are as follows:(i)This type of MCS was generated in a favorable background environment which was characterized by a notable upper-tropospheric divergence south of an upper-level jet,a strong warm advection around a middle-level shortwave trough’s central area,and an instable convective stratification below the trough.Development of the MCS featured rapid increase of cyclonic vorticity in the middle and lower troposphere.The convergence-related vertical stretching and tilting were key factors for the cyclonic-vorticity’s production,and convection-related upward cyclonic-vorticity transport contributed to the upward extending of the MCS.(ii)During the vacating stage of the MCS,it first coupled with a quasistationary Tibetan Plateau vortex(TPV)over the TP’s eastern section,and then decoupled from the vortex.In the former stage,the MCS contributed to maintaining ascending motions and convergence associated with the TPV,which favored its persistence;whereas,in the latter stage,decoupling weakened the TPV-associated convection significantly.This reduced the upward transport of cyclonic vorticity notably,which,together with the negative tilting effect,finally led to the vortex’s dissipation.(iii)After vacating TP,the MCS first weakened due to the disappearance of strong direct sensible heating from the TP on its bottom,and then,under the favorable conditions associated with the shortwave trough over the eastern section of the TP,the MCS redeveloped rapidly.Convergence-related cyclonic-vorticity production in the middle and lower troposphere and upward transport of cyclonic vorticity due to convection governed the MCS’s redevelopment.(iv)Sensitivity simulation shows that latent heating was a necessary condition for the formation and development of the long-lived eastward propagating MCS.On the one hand,this MCS affected the TP’s eastern section and downstream regions directly by inducing precipitation;and on the other hand,it exerted effects on the precipitation over a wider range in the downstream regions by modulating large-scale circulations over and around the TP. 展开更多
关键词 Tibetan Plateau Mesoscale convective system Tibetan Plateau vortex Heavy rainfall vorticity budget Sensitivity simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部