Our previous study used regional homogeneity analysis and found that activity in some brain areas of patients with ischemic stroke changed significantly. In the current study, we examined structural changes in these b...Our previous study used regional homogeneity analysis and found that activity in some brain areas of patients with ischemic stroke changed significantly. In the current study, we examined structural changes in these brain regions by taking structural magnetic resonance imaging scans of 11 ischemic stroke patients and 15 healthy participants, and analyzing the data using voxel-based morphometry. Compared with healthy participants, patients exhibited higher gray matter density in the left inferior occipital gyrus and right anterior white matter tract. In contrast, gray matter density in the right cerebellum, left precentral gyrus, right middle frontal gyrus, and left middle temporal gyrus was less in ischemic stroke patients. The changes of gray matter density in the middle frontal gyrus were negatively associated with the clin- ical rating scales of the Fugl-Meyer Motor Assessment (r = -0.609, P = 0.047) and the left middle temporal gyrus was negatively correlated with the clinical rating scales of the nervous functional deficiency scale (r = -0.737, P = 0.010). Our findings call objectively identify the functional abnormality in some brain regions of ischemic stroke patients.展开更多
Objective To investigate cerebral structural signatures of the bulbar-and spinal-onset amyotrophic lateral sclerosis(ALS) using voxel-based morphometry on magnetic resonance imaging.Methods The MR structural images of...Objective To investigate cerebral structural signatures of the bulbar-and spinal-onset amyotrophic lateral sclerosis(ALS) using voxel-based morphometry on magnetic resonance imaging.Methods The MR structural images of the brain were obtained from 65 ALS patients(15 bulbar-onset, 50 spinalonset) and 65 normal controls(NC) on a 3.0 T MRI system. Gray matter(GM) volume changes were investigated by voxel-based morphometry, and the distribution of the brain regions with volume changes was compared between ALS and normal controls, as well as between bulbar-onset and spinal-onset ALS based on Neuromorphometrics atlas.Results On voxel-level the decreased volume of brain regions in ALS patients was located in the right precentral gyrus(r Prc Gy) and right middle frontal gyrus compared with that in NC. The bulbar-onset ALS presented extramotor cortex atrophy(fronto-temporal pattern), including left medial orbital gyrus, left inferior temporal gyrus and right middle temporal gyrus; the spinal-onset ALS suffered from motor cortex atrophy(r Prc Gy dominance) and extra-motor cortex atrophy(fronto-temporal and extra-fronto-temporal pattern) compared with NC. The spinal-onset ALS featured by GM volume loss of left postcentral gyrus and bulbar-onset ALS featured by GM volume loss of left middle temporal gyrus compared with each other. Conclusions The asymmetric GM atrophy of the motor cortex and extra-motor cortex represents the common MRI structural signatures of spinal-onset ALS, and sole extra-motor cortex atrophy represents the structural signatures of bulbar-onset ALS. The present study also demonstrated that the pattern of GM damage is likely to distribute wider in spinal-onset ALS than in bulbar-onset ALS.展开更多
Voxel-based morphometry-diffeomorphic anatomical registration using exponentiated lie algebra analysis was used to investigate the structural characteristics of white matter in young males with antisocial personality ...Voxel-based morphometry-diffeomorphic anatomical registration using exponentiated lie algebra analysis was used to investigate the structural characteristics of white matter in young males with antisocial personality disorder (APD) and healthy controls without APD. The results revealed that APD subjects, relative to healthy subjects, exhibited increased white matter volume in the bilateral prefrontal lobe, right insula, precentral gyrus, bilateral superior temporal gyrus, right postcentral gyrus, right inferior parietal Iobule, right precuneus, right middle occipital lobe, right parahippocampal gyrus and bilateral cingulate, and decreased volume in the middle temporal cortex and right cerebellum. The white matter volume in the medial frontal gyrus was significantly correlated with antisocial type scores on the Personality Diagnostic Questionnaire in APD subjects. These experimental findings indicate that white matter abnormalities in several brain areas may contribute to antisocial behaviors in APD subjects.展开更多
This study compared the difference in brain structure in 12 mine disaster survivors with chronic post-traumatic stress disorder, 7 cases of improved post-traumatic stress disorder symptoms, and 14 controls who experie...This study compared the difference in brain structure in 12 mine disaster survivors with chronic post-traumatic stress disorder, 7 cases of improved post-traumatic stress disorder symptoms, and 14 controls who experienced the same mine disaster but did not suffer post-traumatic stress disorder, using the voxel-based morphometry method. The correlation between differences in brain structure and post-traumatic stress disorder symptoms was also investigated. Results showed that the gray matter volume was the highest in the trauma control group, followed by the symptoms-improved group, and the lowest in the chronic post-traumatic stress disorder group. Compared with the symptoms-improved group, the gray matter volume in the lingual gyrus of the right occipital lobe was reduced in the chronic post-traumatic stress disorder group. Compared with the trauma control group, the gray matter volume in the right middle occipital gyrus and left middle frontal gyrus was reduced in the symptoms-improved group. Compared with the trauma control group, the gray matter volume in the left superior parietal lo- bule and right superior frontal gyrus was reduced in the chronic post-traumatic stress disorder group. The gray matter volume in the left superior parietal Iobule was significantly positively correlated with the State-Trait Anxiety Inventory subscale score in the symptoms-improved group and chronic post-traumatic stress disorder group (r = 0.477, P = 0.039). Our findings indicate that (1) chronic post-traumatic stress disorder patients have gray matter structural damage in the prefrontal lobe, oc- cipital lobe, and parietal lobe, (2) after post-traumatic stress, the disorder symptoms are improved and gray matter structural damage is reduced, but cannot recover to the trauma-control level, and (3) the superior parietal Iobule is possibly associated with chronic post-traumatic stress disorder. Post-traumatic stress disorder patients exhibit gray matter abnormalities.展开更多
Hepatic myelopathy is a complication seen in patients with chronic liver failure with physiologic or iatrogenic portosystemic shunting. The main symptom is progressive lower limb dyskinesia. The role of the brain moto...Hepatic myelopathy is a complication seen in patients with chronic liver failure with physiologic or iatrogenic portosystemic shunting. The main symptom is progressive lower limb dyskinesia. The role of the brain motor control center in hepatic myelopathy is unknown. This study aimed to investigate the gray matter changes in patients with hepatic myelopathy secondary to transjugular intrahepatic portosystemic shunt and to examine their clinical relevance. This was a cross-sectional study. Twenty-three liver failure patients with hepatic myelopathy(hepatic myelopathy group), 23 liver failure patients without hepatic myelopathy(non-hepatic myelopathy group) after transjugular intrahepatic portosystemic shunt, and 23 demographically matched healthy volunteers were enrolled from March 2014 to November 2016 at Xijing Hospital, Air Force Military Medical University(Fourth Military Medical University), China. High-resolution magnetization-prepared rapid gradient-echo brain imaging was acquired. Group differences in regional gray matter were assessed using voxel-based morphometry analysis. The relationship between aberrant gray matter and motor characteristics was investigated. Results demonstrated that compared with the non-hepatic myelopathy group, gray matter volume abnormalities were asymmetric, with decreased volume in the left insula(P = 0.003), left thalamus(P = 0.029), left superior frontal gyrus(P = 0.006), and right middle cingulate cortex(P = 0.021), and increased volume in the right caudate nucleus(P = 0.017), corrected with open-source software. The volume of the right caudate nucleus in the hepatic myelopathy group negatively correlated with the lower limb clinical rating of the Fugl-Meyer Assessment(r = –0.53, P = 0.01). Compared with healthy controls, patients with and without hepatic myelopathy exhibited overall increased gray matter volume in both thalami, and decreased gray matter volume in both putamen, as well as in the globus pallidus, cerebellum, and vermis. The gray matter abnormalities we found predominantly involved motor-related regions, and may be associated with motor dysfunction. An enlarged right caudate nucleus might help to predict weak lower limb motor performance in patients with preclinical hepatic myelopathy after transjugular intrahepatic portosystemic shunt. This study was approved by the Ethics Committee of Xijing Hospital, Air Force Military Medical University(Fourth Military Medical University), China(approval No. 20140227-6) on February 27, 2014.展开更多
A reduction in gray matter volume is common in patients with chronic back pain, and different types of pain are associated with gray matter abnormalities in distinct brain regions. To examine differ- ences in brain mo...A reduction in gray matter volume is common in patients with chronic back pain, and different types of pain are associated with gray matter abnormalities in distinct brain regions. To examine differ- ences in brain morphology in patients with low back pain or neck and upper back pain, we investi- gated changes in gray matter volume in chronic back pain patients having different sites of pain using voxel-based morphometry. A reduction in cortical gray matter volume was found primarily in the left postcentral gyrus and in the left precuneus and bilateral cuneal cortex of patients with low back pain. In these patients, there was an increase in subcortical gray matter volume in the bilateral putamen and accumbens, right pallidum, right caudate nucleus, and left amygdala. In upper back pain patients, reduced cortical gray matter volume was found in the left precentral and left postcen- tral cortices. Our findings suggest that regional gray matter volume abnormalities in low back pain patients are more extensive than in upper back pain patients. Subcortical gray matter volume in- creases are found only in patients with low back pain.展开更多
Background: Histopathology identified the anatomical and molecular abnormalities ofbrainstem nuclei in migraine patients. However, the exact whole brainstem structural changes in vivo have not yet been identified in ...Background: Histopathology identified the anatomical and molecular abnormalities ofbrainstem nuclei in migraine patients. However, the exact whole brainstem structural changes in vivo have not yet been identified in medication-overuse headache (MOH) transformed from migraine. The aim of this study was to investigate the regional volume changes over the whole brainstem in the MOH patients using voxel-based morphometry (VBM) in vivo.Methods: High-resolution three-dimensional structural images were obtained using a 3.0-Tesla magnetic resonance system from 36 MOH patients and 32 normal controls (NCs) who were consecutively recruited from the International Headache Center, Chinese People's Liberation Army General Hospital, from March 2013 to June 2016. VBM was used to assess the brainstem structural alteration in the MOH patients, and voxel-wise correlation was performed to evaluate the relationship with the clinical characteristics.Results: The brainstem region with increased volume located in the left ventrolateral periaqueductal gray (MNI coordinate: -1, -33, -8), ventral tegmental area (MNI coordinate: 0, -22, - 12), bilateral substantia nigra (MNI coordinate: -8, - 16, - 12, 9, - 16, - 12), and trigeminal root entry zone (MNI coordinate: -19, -29, -31; 19, -32, -29) in MOH patients compared with NCs. The headache visual analog scale score was positively related with the left rostral ventromedial medulla (RVM) (MNI coordinate: -1, -37, -56; cluster size: 20; r = 0.602) in the MOH patients.Conclusions: The regional volume gain ofbrainstem could underlie the neuromechanism of impaired ascending and descending pathway in the MOH patients, and the left RVM volume alteration could imply the impaired tolerance ofnociceptive pain input and could be used to assess the headache disability in the MOH patients.展开更多
Many studies have shown the functional relevance of cross-modal plasticity in blind men. In order to study the changes of their brain structure, voxel-based morphometry (VBM) methods are used. The regional gray matt...Many studies have shown the functional relevance of cross-modal plasticity in blind men. In order to study the changes of their brain structure, voxel-based morphometry (VBM) methods are used. The regional gray matter (GM) and white matter (WM) concentrations of magnetic resonance (MR) images from 11 blind people and 9 sighted control subjects are compared using standard VBM. Optimized VBM is also discussed to measure the absolute local volume of GM or WM. Consistent results are achieved by statistical analysis with these methods. There are distinct differences not only in visual cortex but also the sensory area, auditory area and motor area. GM concentrations in blind men significantly decreased in Brodmann 7 and 22. While in Brodmann 18 and 19, GM concentration increased. GM volumes decreased in Brodmann 3, 4, 6, 9 and 45. On the other hand, both WM concentration and volume increased in Brodmann 7. These results suggest that early visual deprivation can lead to changes in the brain structural anatomy which is consistent with the cortical cross-modal reorganization found by functional imaging. It may help to discover the relationship between the brain structural anatomy and the brain functional data of blind men at a macroscopic level from neuroimaging perspective.展开更多
BACKGROUND Congenital heart disease(CHD)is a cardiovascular malformation caused by abnormal heart and/or vascular development in the fetus.In children with CHD,abnormalities in the development and function of the nerv...BACKGROUND Congenital heart disease(CHD)is a cardiovascular malformation caused by abnormal heart and/or vascular development in the fetus.In children with CHD,abnormalities in the development and function of the nervous system are common.At present,there is a lack of research on the preoperative neurological development and injury in young children with non-cyanotic CHD.AIM To determine the changes in white matter,gray matter,and cerebrospinal fluid(CSF)by magnetic resonance imaging(MRI)in children with non-cyanotic CHD as compared with healthy controls.METHODS Children diagnosed with non-cyanotic CHD on ultrasonography(n=54)and healthy control subjects(n=35)were included in the study.All the subjects were aged 1-3 years.Brain MRI was performed prior to surgery for CHD.The SPM v12 software was used to calculate the volumes of the gray matter,white matter,CSF,and the whole brain(sum of the gray matter,white matter,and CSF volumes).Volume differences between the two groups were analyzed.Voxel-based morphometry was used to compare specific brain regions with statistically significant atrophy.RESULTS Compared with the control group,the study group had significantly reduced whole-brain white matter volume(P<0.05),but similar whole-brain gray matter,CSF,and whole-brain volumes(P>0.05).As compared with the healthy controls,children with non-cyanotic CHD had mild underdevelopment in the white matter of the anterior central gyrus,the posterior central gyrus,and the pulvinar.CONCLUSION Children with non-cyanotic CHD show decreased white matter volume before surgery,and this volume reduction is mainly concentrated in the somatosensory and somatic motor nerve regions.展开更多
Objective To investigate the changes of brain gray matter volume in patients with occupational noise-induced hearing loss by voxel based morphometry(VBM).Methods 16 age-and education-matched healthy controls and 42 pa...Objective To investigate the changes of brain gray matter volume in patients with occupational noise-induced hearing loss by voxel based morphometry(VBM).Methods 16 age-and education-matched healthy controls and 42 patients with occupational noise induced hearing loss,including 27 in mild group and 15 in severe group,received MRI 3D-FSPGR sequence T1WI sagittal scan,and then underwent VBM of brain gray matter volume data analysis.Results The brain gray matter volume of the left occipitotemporal lateral gyrus,the anterior cingulate gyrus,the bilateral angular gyrus,the precuneus and the near midline area of cerebellum differed between the experimental group and the control group(P<0.01).Conclusion The volume of gray matter in specific brain areas of patients with occupational noise-induced hearing loss changed,and the effect of noise on brain structure was revealed from the perspective of imaging.展开更多
BACKGROUND Prior research has demonstrated that the brains of adolescents with depression exhibit distinct structural alterations.However,preliminary studies have documented the pathophysiological changes in certain b...BACKGROUND Prior research has demonstrated that the brains of adolescents with depression exhibit distinct structural alterations.However,preliminary studies have documented the pathophysiological changes in certain brain regions,such as the cerebellum,highlighting a need for further research to support the current understanding of this disease.AIM To study brain changes in depressed adolescents.METHODS This study enrolled 34 adolescents with depression and 34 age-,sex-,and education-level-matched healthy control(HC)individuals.Structural and functional alterations were identified when comparing the brains of these two participant groups through voxel-based morphometry and cerebral blood flow(CBF)analysis,respectively.Associations between identified brain alterations and the severity of depressive symptoms were explored through Pearson correlation analyses.RESULTS The cerebellum,superior frontal gyrus,cingulate gyrus,pallidum,middle frontal gyrus,angular gyrus,thalamus,precentral gyrus,inferior temporal gyrus,superior temporal gyrus,inferior frontal gyrus,and supplementary motor areas of adolescents with depression showed an increase in brain volume compared to HC individuals.These patients with depression further presented with a pronounced drop in CBF in the left pallidum(group=98,and peak t=-4.4324),together with increased CBF in the right percental gyrus(PerCG)(group=90,and peak t=4.5382).In addition,17-item Hamilton Depression Rating Scale scores were significantly correlated with the increased volume in the opercular portion of the left inferior frontal gyrus(r=-0.5231,P<0.01).CONCLUSION The right PerCG showed structural and CBF changes,indicating that research on this part of the brain could offer insight into the pathophysiological causes of impaired cognition.展开更多
Purpose: The multifidus muscle is an important extensor muscle of the lumbar spine. It plays a major role in the stability and realization of axial rotation movements of the thoraco-lumbar spine. Its atrophy by fatty ...Purpose: The multifidus muscle is an important extensor muscle of the lumbar spine. It plays a major role in the stability and realization of axial rotation movements of the thoraco-lumbar spine. Its atrophy by fatty degeneration would be at the origin of the occurrence of chronic low back pain which constitutes a public health problem in Senegal. Taking into account its anatomy is essential for the etiopathogenic analysis and the treatment of low back pain. The purpose of our work was to investigate the impact of multifidus muscle morphometry on the anatomy-clinical evolution of low back pain. Material and method: this was a prospective study over a period of 30 months from November 2019 to May 2022. It involved 100 patients seen in the neurology department of Fann Hospital for chronic low back pain and who had already had a scanner falling within the criteria for low back pain. We used 3D Slicer, SPSS 20, Excel 2016 software to model and analyze the morphometric data of the multifidus muscle after physiotherapy and control lumbar scans. Results: The sex ratio was 2.23. The average age of the patients was 45 ± 7 years. On the initial CT scan, according to the Hadar classification, we noted a predominance of grade 2 with 56% in L5/S1, followed by grade 1 with 32% and grade 3 with 14%. In L4/L5, the majority of patients, 67%, had grade 1. A conflicting circumferential disc bulge with the roots predominating in L5/S1 was present in 94% of men (p-value = 0.02). Before physiotherapy, the average volume of the multifidus was 193 mm<sup>3</sup> ± 39, after physiotherapy it was 203 mm<sup>3</sup> ± 42 with a progression rate of 5.2%. Clinically, severe type pain had regressed from 86% before physiotherapy to 0% after physiotherapy (p-value = 0.03). Conclusion: Taking into account the morphometry of the multifidus is an essential element in the management of chronic low back pain.展开更多
Background Sperm migration by thermotaxis is a guidance mechanism that operates along the oviduct and it has proved to be a valid method for selecting spermatozoa with low DNA fragmentation(SDF)in mice,humans,and stal...Background Sperm migration by thermotaxis is a guidance mechanism that operates along the oviduct and it has proved to be a valid method for selecting spermatozoa with low DNA fragmentation(SDF)in mice,humans,and stallions.This study aimed to analyse if bull spermatozoa could be selected by thermotaxis and to assess their quality in terms of SDF as well as determine the presence of a specific sperm subpopulation based on sperm morphometry and assess their fertilizing capacity by ICSI.Methods We used frozen-thawed sperm from 6 bulls and sperm selection by thermotaxis was performed with TALP medium supplemented with 25 mmol/L of HEPES and 5 mmol/L of caffeine.In these conditions,sperm selection was achieved,obtaining a net thermotaxis of 3.6%.Subsequently,we analysed the SDF of the migrated and not-migrated spermatozoa using the neutral COMET assay,and we evaluated the size of the sperm head using Hemacolor■ staining with Motic Images Plus 3 software.Additionally,migrated and not-migrated spermatozoa by thermotaxis were used to fertilize bovine in vitro matured(IVM)oocytes by ICSI,a very inefficient procedure in cattle that is only successful when the oocyte is artificially activated.Results The results showed lower SDF(χ^(2),P<0.001,13.3%reduction,n=8)and lower head size parameters(length and width,P<0.01;and perimeter and area,P<0.001;n=4)in those spermatozoa migrated in comparison to those not-migrated.The distribution of sperm subpopulations structure varied between groups,highlighting cluster 2,characterized by spermatozoa with small head size,and high ellipticity and elongated heads,as the most abundant in the thermotaxis migrated group.When performed ICSI(without oocyte artificial activation)with the thermotactic sperm,the blastocyst rate was 32.2%±9.3%in the group microinjected with the thermotactic spermatozoa vs.8.3%±7.8%in the group of not-migrated sperm(χ^(2),P<0.05).Conclusion Our results showed that bull sperm selection by thermotaxis has a much higher DNA integrity,small and elongated head size parameters,and different sperm subpopulation structure than the not-selected spermatozoa.Additionally,we evidenced that thermotactic spermatozoa improve ICSI success rates.展开更多
Voxel-based canopy profiling is commonly used to determine small-scale leaf area.Layer thickness and voxel size impact accuracy when using this method.Here,we determined the optimal combination of layer thickness and ...Voxel-based canopy profiling is commonly used to determine small-scale leaf area.Layer thickness and voxel size impact accuracy when using this method.Here,we determined the optimal combination of layer thickness and voxel size to estimate leaf area density accurately.Terrestrial LiDAR Stonex X300 was used to generate point cloud data for Masson pines(Pinus massoniana).The canopy layer was stratified into 0.10-1.00-m-thick layers,while voxel size was 0.01-0.10 m.The leaf area density of individual trees was estimated using leaf area indices for the upper,middle,and lower canopy and the overall canopy.The true leaf area index,obtained by layered harvesting,was used to verify the inversion results.Leaf area density was inverted by nine combinations of layer thickness and voxel size.The average relative accuracy and mean estimated accuracy of these combined inversion results exceeded 80%.When layer thickness was 1.00 m and voxel size 0.05 m,inversion was closest to the true value.The average relative accuracy was 92.58%,mean estimated accuracy 98.00%,and root mean square error 0.17.The combination of leaf area density and index was accurately retrieved.In conclusion,nondestructive voxel-based canopy profiling proved suitable for inverting the leaf area density of Masson pine in Hetian Town,Fujian Province.展开更多
BACKGROUND Major depressive disorder(MDD)in adolescents and young adults contributes significantly to global morbidity,with inconsistent findings on brain structural changes from structural magnetic resonance imaging ...BACKGROUND Major depressive disorder(MDD)in adolescents and young adults contributes significantly to global morbidity,with inconsistent findings on brain structural changes from structural magnetic resonance imaging studies.Activation likeli-hood estimation(ALE)offers a method to synthesize these diverse findings and identify consistent brain anomalies.METHODS We performed a comprehensive literature search in PubMed,Web of Science,Embase,and Chinese National Knowledge Infrastructure databases for neuroi-maging studies on MDD among adolescents and young adults published up to November 19,2023.Two independent researchers performed the study selection,quality assessment,and data extraction.The ALE technique was employed to synthesize findings on localized brain function anomalies in MDD patients,which was supplemented by sensitivity analyses.RESULTS Twenty-two studies comprising fourteen diffusion tensor imaging(DTI)studies and eight voxel-based morphome-try(VBM)studies,and involving 451 MDD patients and 465 healthy controls(HCs)for DTI and 664 MDD patients and 946 HCs for VBM,were included.DTI-based ALE demonstrated significant reductions in fractional anisotropy(FA)values in the right caudate head,right insula,and right lentiform nucleus putamen in adolescents and young adults with MDD compared to HCs,with no regions exhibiting increased FA values.VBM-based ALE did not demonstrate significant alterations in gray matter volume.Sensitivity analyses highlighted consistent findings in the right caudate head(11 of 14 analyses),right insula(10 of 14 analyses),and right lentiform nucleus putamen(11 of 14 analyses).CONCLUSION Structural alterations in the right caudate head,right insula,and right lentiform nucleus putamen in young MDD patients may contribute to its recurrent nature,offering insights for targeted therapies.展开更多
Voxel-based morphometry can be used to quantitatively compare structural differences and func-tional changes of gray matter in subjects. In the present study, we compared gray matter images of 32 patients with Parkin...Voxel-based morphometry can be used to quantitatively compare structural differences and func-tional changes of gray matter in subjects. In the present study, we compared gray matter images of 32 patients with Parkinson’s disease and 25 healthy controls using voxel-based morphometry based on 3.0 T high-field magnetic resonance T1-weighted imaging and clinical neurological scale scores. Results showed that the scores in Mini-Mental State Examination and Montreal Cognitive Assessment were lower in patients compared with controls. In particular, the scores of visuospatial/executive function items in Montreal Cognitive Assessment were significantly reduced, but mean scores of non-motor symptoms significantly increased, in patients with Parkinson’s dis-ease. In addition, gray matter volume was significantly diminished in Parkinson’s disease patients compared with normal controls, including bilateral temporal lobe, bilateral occipital lobe, bilateral parietal lobe, bilateral frontal lobe, bilateral insular lobe, bilateral parahippocampal gyrus, bilateral amygdale, right uncus, and right posterior lobe of the cerebel um. These findings indicate that voxel-based morphometry can accurately and quantitatively assess the loss of gray matter volume in patients with Parkinson's disease, and provide essential neuroimaging evidence for multisystem pathological mechanisms involved in Parkinson’s disease.展开更多
基金financially supported by the National Program on Key Basic Research Project of China(973 Program)No.2012CB518501the National Natural Science Foundation of China,No.81072864
文摘Our previous study used regional homogeneity analysis and found that activity in some brain areas of patients with ischemic stroke changed significantly. In the current study, we examined structural changes in these brain regions by taking structural magnetic resonance imaging scans of 11 ischemic stroke patients and 15 healthy participants, and analyzing the data using voxel-based morphometry. Compared with healthy participants, patients exhibited higher gray matter density in the left inferior occipital gyrus and right anterior white matter tract. In contrast, gray matter density in the right cerebellum, left precentral gyrus, right middle frontal gyrus, and left middle temporal gyrus was less in ischemic stroke patients. The changes of gray matter density in the middle frontal gyrus were negatively associated with the clin- ical rating scales of the Fugl-Meyer Motor Assessment (r = -0.609, P = 0.047) and the left middle temporal gyrus was negatively correlated with the clinical rating scales of the nervous functional deficiency scale (r = -0.737, P = 0.010). Our findings call objectively identify the functional abnormality in some brain regions of ischemic stroke patients.
基金Supported by the grant of the National Natural Sciences Foundation of China(30470512)
文摘Objective To investigate cerebral structural signatures of the bulbar-and spinal-onset amyotrophic lateral sclerosis(ALS) using voxel-based morphometry on magnetic resonance imaging.Methods The MR structural images of the brain were obtained from 65 ALS patients(15 bulbar-onset, 50 spinalonset) and 65 normal controls(NC) on a 3.0 T MRI system. Gray matter(GM) volume changes were investigated by voxel-based morphometry, and the distribution of the brain regions with volume changes was compared between ALS and normal controls, as well as between bulbar-onset and spinal-onset ALS based on Neuromorphometrics atlas.Results On voxel-level the decreased volume of brain regions in ALS patients was located in the right precentral gyrus(r Prc Gy) and right middle frontal gyrus compared with that in NC. The bulbar-onset ALS presented extramotor cortex atrophy(fronto-temporal pattern), including left medial orbital gyrus, left inferior temporal gyrus and right middle temporal gyrus; the spinal-onset ALS suffered from motor cortex atrophy(r Prc Gy dominance) and extra-motor cortex atrophy(fronto-temporal and extra-fronto-temporal pattern) compared with NC. The spinal-onset ALS featured by GM volume loss of left postcentral gyrus and bulbar-onset ALS featured by GM volume loss of left middle temporal gyrus compared with each other. Conclusions The asymmetric GM atrophy of the motor cortex and extra-motor cortex represents the common MRI structural signatures of spinal-onset ALS, and sole extra-motor cortex atrophy represents the structural signatures of bulbar-onset ALS. The present study also demonstrated that the pattern of GM damage is likely to distribute wider in spinal-onset ALS than in bulbar-onset ALS.
基金the National Natural Science Foundation of China, No. 30570609
文摘Voxel-based morphometry-diffeomorphic anatomical registration using exponentiated lie algebra analysis was used to investigate the structural characteristics of white matter in young males with antisocial personality disorder (APD) and healthy controls without APD. The results revealed that APD subjects, relative to healthy subjects, exhibited increased white matter volume in the bilateral prefrontal lobe, right insula, precentral gyrus, bilateral superior temporal gyrus, right postcentral gyrus, right inferior parietal Iobule, right precuneus, right middle occipital lobe, right parahippocampal gyrus and bilateral cingulate, and decreased volume in the middle temporal cortex and right cerebellum. The white matter volume in the medial frontal gyrus was significantly correlated with antisocial type scores on the Personality Diagnostic Questionnaire in APD subjects. These experimental findings indicate that white matter abnormalities in several brain areas may contribute to antisocial behaviors in APD subjects.
基金Key Program forGuangming Lu,No.BWS11J063 and No.10z026
文摘This study compared the difference in brain structure in 12 mine disaster survivors with chronic post-traumatic stress disorder, 7 cases of improved post-traumatic stress disorder symptoms, and 14 controls who experienced the same mine disaster but did not suffer post-traumatic stress disorder, using the voxel-based morphometry method. The correlation between differences in brain structure and post-traumatic stress disorder symptoms was also investigated. Results showed that the gray matter volume was the highest in the trauma control group, followed by the symptoms-improved group, and the lowest in the chronic post-traumatic stress disorder group. Compared with the symptoms-improved group, the gray matter volume in the lingual gyrus of the right occipital lobe was reduced in the chronic post-traumatic stress disorder group. Compared with the trauma control group, the gray matter volume in the right middle occipital gyrus and left middle frontal gyrus was reduced in the symptoms-improved group. Compared with the trauma control group, the gray matter volume in the left superior parietal lo- bule and right superior frontal gyrus was reduced in the chronic post-traumatic stress disorder group. The gray matter volume in the left superior parietal Iobule was significantly positively correlated with the State-Trait Anxiety Inventory subscale score in the symptoms-improved group and chronic post-traumatic stress disorder group (r = 0.477, P = 0.039). Our findings indicate that (1) chronic post-traumatic stress disorder patients have gray matter structural damage in the prefrontal lobe, oc- cipital lobe, and parietal lobe, (2) after post-traumatic stress, the disorder symptoms are improved and gray matter structural damage is reduced, but cannot recover to the trauma-control level, and (3) the superior parietal Iobule is possibly associated with chronic post-traumatic stress disorder. Post-traumatic stress disorder patients exhibit gray matter abnormalities.
文摘Hepatic myelopathy is a complication seen in patients with chronic liver failure with physiologic or iatrogenic portosystemic shunting. The main symptom is progressive lower limb dyskinesia. The role of the brain motor control center in hepatic myelopathy is unknown. This study aimed to investigate the gray matter changes in patients with hepatic myelopathy secondary to transjugular intrahepatic portosystemic shunt and to examine their clinical relevance. This was a cross-sectional study. Twenty-three liver failure patients with hepatic myelopathy(hepatic myelopathy group), 23 liver failure patients without hepatic myelopathy(non-hepatic myelopathy group) after transjugular intrahepatic portosystemic shunt, and 23 demographically matched healthy volunteers were enrolled from March 2014 to November 2016 at Xijing Hospital, Air Force Military Medical University(Fourth Military Medical University), China. High-resolution magnetization-prepared rapid gradient-echo brain imaging was acquired. Group differences in regional gray matter were assessed using voxel-based morphometry analysis. The relationship between aberrant gray matter and motor characteristics was investigated. Results demonstrated that compared with the non-hepatic myelopathy group, gray matter volume abnormalities were asymmetric, with decreased volume in the left insula(P = 0.003), left thalamus(P = 0.029), left superior frontal gyrus(P = 0.006), and right middle cingulate cortex(P = 0.021), and increased volume in the right caudate nucleus(P = 0.017), corrected with open-source software. The volume of the right caudate nucleus in the hepatic myelopathy group negatively correlated with the lower limb clinical rating of the Fugl-Meyer Assessment(r = –0.53, P = 0.01). Compared with healthy controls, patients with and without hepatic myelopathy exhibited overall increased gray matter volume in both thalami, and decreased gray matter volume in both putamen, as well as in the globus pallidus, cerebellum, and vermis. The gray matter abnormalities we found predominantly involved motor-related regions, and may be associated with motor dysfunction. An enlarged right caudate nucleus might help to predict weak lower limb motor performance in patients with preclinical hepatic myelopathy after transjugular intrahepatic portosystemic shunt. This study was approved by the Ethics Committee of Xijing Hospital, Air Force Military Medical University(Fourth Military Medical University), China(approval No. 20140227-6) on February 27, 2014.
基金supported partially by two grants from the National Natural Science Foundation of China,No.30870686 and 81371530
文摘A reduction in gray matter volume is common in patients with chronic back pain, and different types of pain are associated with gray matter abnormalities in distinct brain regions. To examine differ- ences in brain morphology in patients with low back pain or neck and upper back pain, we investi- gated changes in gray matter volume in chronic back pain patients having different sites of pain using voxel-based morphometry. A reduction in cortical gray matter volume was found primarily in the left postcentral gyrus and in the left precuneus and bilateral cuneal cortex of patients with low back pain. In these patients, there was an increase in subcortical gray matter volume in the bilateral putamen and accumbens, right pallidum, right caudate nucleus, and left amygdala. In upper back pain patients, reduced cortical gray matter volume was found in the left precentral and left postcen- tral cortices. Our findings suggest that regional gray matter volume abnormalities in low back pain patients are more extensive than in upper back pain patients. Subcortical gray matter volume in- creases are found only in patients with low back pain.
基金This work was supported by grants from Hainan Provincial Natural Science Foundation of China (No. 818MS153), Special Financial Grant from the China Postdoctoral Science Foundation (No. 2014T70960), and Foundation for Medical and Health Science and Technology Innovation Project of Sanya (No. 2016YW37).
文摘Background: Histopathology identified the anatomical and molecular abnormalities ofbrainstem nuclei in migraine patients. However, the exact whole brainstem structural changes in vivo have not yet been identified in medication-overuse headache (MOH) transformed from migraine. The aim of this study was to investigate the regional volume changes over the whole brainstem in the MOH patients using voxel-based morphometry (VBM) in vivo.Methods: High-resolution three-dimensional structural images were obtained using a 3.0-Tesla magnetic resonance system from 36 MOH patients and 32 normal controls (NCs) who were consecutively recruited from the International Headache Center, Chinese People's Liberation Army General Hospital, from March 2013 to June 2016. VBM was used to assess the brainstem structural alteration in the MOH patients, and voxel-wise correlation was performed to evaluate the relationship with the clinical characteristics.Results: The brainstem region with increased volume located in the left ventrolateral periaqueductal gray (MNI coordinate: -1, -33, -8), ventral tegmental area (MNI coordinate: 0, -22, - 12), bilateral substantia nigra (MNI coordinate: -8, - 16, - 12, 9, - 16, - 12), and trigeminal root entry zone (MNI coordinate: -19, -29, -31; 19, -32, -29) in MOH patients compared with NCs. The headache visual analog scale score was positively related with the left rostral ventromedial medulla (RVM) (MNI coordinate: -1, -37, -56; cluster size: 20; r = 0.602) in the MOH patients.Conclusions: The regional volume gain ofbrainstem could underlie the neuromechanism of impaired ascending and descending pathway in the MOH patients, and the left RVM volume alteration could imply the impaired tolerance ofnociceptive pain input and could be used to assess the headache disability in the MOH patients.
基金the National Natural Science Foundation of China (30400136)
文摘Many studies have shown the functional relevance of cross-modal plasticity in blind men. In order to study the changes of their brain structure, voxel-based morphometry (VBM) methods are used. The regional gray matter (GM) and white matter (WM) concentrations of magnetic resonance (MR) images from 11 blind people and 9 sighted control subjects are compared using standard VBM. Optimized VBM is also discussed to measure the absolute local volume of GM or WM. Consistent results are achieved by statistical analysis with these methods. There are distinct differences not only in visual cortex but also the sensory area, auditory area and motor area. GM concentrations in blind men significantly decreased in Brodmann 7 and 22. While in Brodmann 18 and 19, GM concentration increased. GM volumes decreased in Brodmann 3, 4, 6, 9 and 45. On the other hand, both WM concentration and volume increased in Brodmann 7. These results suggest that early visual deprivation can lead to changes in the brain structural anatomy which is consistent with the cortical cross-modal reorganization found by functional imaging. It may help to discover the relationship between the brain structural anatomy and the brain functional data of blind men at a macroscopic level from neuroimaging perspective.
文摘BACKGROUND Congenital heart disease(CHD)is a cardiovascular malformation caused by abnormal heart and/or vascular development in the fetus.In children with CHD,abnormalities in the development and function of the nervous system are common.At present,there is a lack of research on the preoperative neurological development and injury in young children with non-cyanotic CHD.AIM To determine the changes in white matter,gray matter,and cerebrospinal fluid(CSF)by magnetic resonance imaging(MRI)in children with non-cyanotic CHD as compared with healthy controls.METHODS Children diagnosed with non-cyanotic CHD on ultrasonography(n=54)and healthy control subjects(n=35)were included in the study.All the subjects were aged 1-3 years.Brain MRI was performed prior to surgery for CHD.The SPM v12 software was used to calculate the volumes of the gray matter,white matter,CSF,and the whole brain(sum of the gray matter,white matter,and CSF volumes).Volume differences between the two groups were analyzed.Voxel-based morphometry was used to compare specific brain regions with statistically significant atrophy.RESULTS Compared with the control group,the study group had significantly reduced whole-brain white matter volume(P<0.05),but similar whole-brain gray matter,CSF,and whole-brain volumes(P>0.05).As compared with the healthy controls,children with non-cyanotic CHD had mild underdevelopment in the white matter of the anterior central gyrus,the posterior central gyrus,and the pulvinar.CONCLUSION Children with non-cyanotic CHD show decreased white matter volume before surgery,and this volume reduction is mainly concentrated in the somatosensory and somatic motor nerve regions.
文摘Objective To investigate the changes of brain gray matter volume in patients with occupational noise-induced hearing loss by voxel based morphometry(VBM).Methods 16 age-and education-matched healthy controls and 42 patients with occupational noise induced hearing loss,including 27 in mild group and 15 in severe group,received MRI 3D-FSPGR sequence T1WI sagittal scan,and then underwent VBM of brain gray matter volume data analysis.Results The brain gray matter volume of the left occipitotemporal lateral gyrus,the anterior cingulate gyrus,the bilateral angular gyrus,the precuneus and the near midline area of cerebellum differed between the experimental group and the control group(P<0.01).Conclusion The volume of gray matter in specific brain areas of patients with occupational noise-induced hearing loss changed,and the effect of noise on brain structure was revealed from the perspective of imaging.
基金Supported by The Project of Scientific Research and Innovative Experiment for College Students in Chongqing Medical University,No.202215the Provincial Project of University Students Innovation and Entrepreneurship Training Program,No.202210631015.
文摘BACKGROUND Prior research has demonstrated that the brains of adolescents with depression exhibit distinct structural alterations.However,preliminary studies have documented the pathophysiological changes in certain brain regions,such as the cerebellum,highlighting a need for further research to support the current understanding of this disease.AIM To study brain changes in depressed adolescents.METHODS This study enrolled 34 adolescents with depression and 34 age-,sex-,and education-level-matched healthy control(HC)individuals.Structural and functional alterations were identified when comparing the brains of these two participant groups through voxel-based morphometry and cerebral blood flow(CBF)analysis,respectively.Associations between identified brain alterations and the severity of depressive symptoms were explored through Pearson correlation analyses.RESULTS The cerebellum,superior frontal gyrus,cingulate gyrus,pallidum,middle frontal gyrus,angular gyrus,thalamus,precentral gyrus,inferior temporal gyrus,superior temporal gyrus,inferior frontal gyrus,and supplementary motor areas of adolescents with depression showed an increase in brain volume compared to HC individuals.These patients with depression further presented with a pronounced drop in CBF in the left pallidum(group=98,and peak t=-4.4324),together with increased CBF in the right percental gyrus(PerCG)(group=90,and peak t=4.5382).In addition,17-item Hamilton Depression Rating Scale scores were significantly correlated with the increased volume in the opercular portion of the left inferior frontal gyrus(r=-0.5231,P<0.01).CONCLUSION The right PerCG showed structural and CBF changes,indicating that research on this part of the brain could offer insight into the pathophysiological causes of impaired cognition.
文摘Purpose: The multifidus muscle is an important extensor muscle of the lumbar spine. It plays a major role in the stability and realization of axial rotation movements of the thoraco-lumbar spine. Its atrophy by fatty degeneration would be at the origin of the occurrence of chronic low back pain which constitutes a public health problem in Senegal. Taking into account its anatomy is essential for the etiopathogenic analysis and the treatment of low back pain. The purpose of our work was to investigate the impact of multifidus muscle morphometry on the anatomy-clinical evolution of low back pain. Material and method: this was a prospective study over a period of 30 months from November 2019 to May 2022. It involved 100 patients seen in the neurology department of Fann Hospital for chronic low back pain and who had already had a scanner falling within the criteria for low back pain. We used 3D Slicer, SPSS 20, Excel 2016 software to model and analyze the morphometric data of the multifidus muscle after physiotherapy and control lumbar scans. Results: The sex ratio was 2.23. The average age of the patients was 45 ± 7 years. On the initial CT scan, according to the Hadar classification, we noted a predominance of grade 2 with 56% in L5/S1, followed by grade 1 with 32% and grade 3 with 14%. In L4/L5, the majority of patients, 67%, had grade 1. A conflicting circumferential disc bulge with the roots predominating in L5/S1 was present in 94% of men (p-value = 0.02). Before physiotherapy, the average volume of the multifidus was 193 mm<sup>3</sup> ± 39, after physiotherapy it was 203 mm<sup>3</sup> ± 42 with a progression rate of 5.2%. Clinically, severe type pain had regressed from 86% before physiotherapy to 0% after physiotherapy (p-value = 0.03). Conclusion: Taking into account the morphometry of the multifidus is an essential element in the management of chronic low back pain.
基金funded by the Spanish Ministry of Science and Innovation-MCIN (RTI2018-093548-B-100 and PID202M225070B-100 to A.Gutierrez-Adan and PID2019-1l1641 RB-100 to D.Rizos,funded by MCIN/AEI/10.13039/501100011033/and European Union"NextGeneration EU"/PRTR)supported by a Juan de la Cierva postdoctoral contract (FJC2019-040385-1)from the MCIN+1 种基金supported by a"Doctorados Industriales2018"fellowship of Comunidad de Madrid (IND2018/BIO-9610)supported by FPI scholarships from the MCIN (PRE2020-094452 and PRE2019-088813 respectively)。
文摘Background Sperm migration by thermotaxis is a guidance mechanism that operates along the oviduct and it has proved to be a valid method for selecting spermatozoa with low DNA fragmentation(SDF)in mice,humans,and stallions.This study aimed to analyse if bull spermatozoa could be selected by thermotaxis and to assess their quality in terms of SDF as well as determine the presence of a specific sperm subpopulation based on sperm morphometry and assess their fertilizing capacity by ICSI.Methods We used frozen-thawed sperm from 6 bulls and sperm selection by thermotaxis was performed with TALP medium supplemented with 25 mmol/L of HEPES and 5 mmol/L of caffeine.In these conditions,sperm selection was achieved,obtaining a net thermotaxis of 3.6%.Subsequently,we analysed the SDF of the migrated and not-migrated spermatozoa using the neutral COMET assay,and we evaluated the size of the sperm head using Hemacolor■ staining with Motic Images Plus 3 software.Additionally,migrated and not-migrated spermatozoa by thermotaxis were used to fertilize bovine in vitro matured(IVM)oocytes by ICSI,a very inefficient procedure in cattle that is only successful when the oocyte is artificially activated.Results The results showed lower SDF(χ^(2),P<0.001,13.3%reduction,n=8)and lower head size parameters(length and width,P<0.01;and perimeter and area,P<0.001;n=4)in those spermatozoa migrated in comparison to those not-migrated.The distribution of sperm subpopulations structure varied between groups,highlighting cluster 2,characterized by spermatozoa with small head size,and high ellipticity and elongated heads,as the most abundant in the thermotaxis migrated group.When performed ICSI(without oocyte artificial activation)with the thermotactic sperm,the blastocyst rate was 32.2%±9.3%in the group microinjected with the thermotactic spermatozoa vs.8.3%±7.8%in the group of not-migrated sperm(χ^(2),P<0.05).Conclusion Our results showed that bull sperm selection by thermotaxis has a much higher DNA integrity,small and elongated head size parameters,and different sperm subpopulation structure than the not-selected spermatozoa.Additionally,we evidenced that thermotactic spermatozoa improve ICSI success rates.
基金This research was funded by Fujian University Industry-University Cooperation Project(grant number 2019N5012)Remote Sensing Quantitative Simulation of Rainfall Erosion Reduction Function of Forest Vertical Structure(grant number 31770760).
文摘Voxel-based canopy profiling is commonly used to determine small-scale leaf area.Layer thickness and voxel size impact accuracy when using this method.Here,we determined the optimal combination of layer thickness and voxel size to estimate leaf area density accurately.Terrestrial LiDAR Stonex X300 was used to generate point cloud data for Masson pines(Pinus massoniana).The canopy layer was stratified into 0.10-1.00-m-thick layers,while voxel size was 0.01-0.10 m.The leaf area density of individual trees was estimated using leaf area indices for the upper,middle,and lower canopy and the overall canopy.The true leaf area index,obtained by layered harvesting,was used to verify the inversion results.Leaf area density was inverted by nine combinations of layer thickness and voxel size.The average relative accuracy and mean estimated accuracy of these combined inversion results exceeded 80%.When layer thickness was 1.00 m and voxel size 0.05 m,inversion was closest to the true value.The average relative accuracy was 92.58%,mean estimated accuracy 98.00%,and root mean square error 0.17.The combination of leaf area density and index was accurately retrieved.In conclusion,nondestructive voxel-based canopy profiling proved suitable for inverting the leaf area density of Masson pine in Hetian Town,Fujian Province.
基金Supported by the Guizhou Province Science and Technology Plan Project,No.ZK-2023-1952021 Health Commission of Guizhou Province Project,No.gzwkj2021-150.
文摘BACKGROUND Major depressive disorder(MDD)in adolescents and young adults contributes significantly to global morbidity,with inconsistent findings on brain structural changes from structural magnetic resonance imaging studies.Activation likeli-hood estimation(ALE)offers a method to synthesize these diverse findings and identify consistent brain anomalies.METHODS We performed a comprehensive literature search in PubMed,Web of Science,Embase,and Chinese National Knowledge Infrastructure databases for neuroi-maging studies on MDD among adolescents and young adults published up to November 19,2023.Two independent researchers performed the study selection,quality assessment,and data extraction.The ALE technique was employed to synthesize findings on localized brain function anomalies in MDD patients,which was supplemented by sensitivity analyses.RESULTS Twenty-two studies comprising fourteen diffusion tensor imaging(DTI)studies and eight voxel-based morphome-try(VBM)studies,and involving 451 MDD patients and 465 healthy controls(HCs)for DTI and 664 MDD patients and 946 HCs for VBM,were included.DTI-based ALE demonstrated significant reductions in fractional anisotropy(FA)values in the right caudate head,right insula,and right lentiform nucleus putamen in adolescents and young adults with MDD compared to HCs,with no regions exhibiting increased FA values.VBM-based ALE did not demonstrate significant alterations in gray matter volume.Sensitivity analyses highlighted consistent findings in the right caudate head(11 of 14 analyses),right insula(10 of 14 analyses),and right lentiform nucleus putamen(11 of 14 analyses).CONCLUSION Structural alterations in the right caudate head,right insula,and right lentiform nucleus putamen in young MDD patients may contribute to its recurrent nature,offering insights for targeted therapies.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,the Medical Clinical Science and Technology Developemnt Fund of Jiangsu University,No.JLY20120122Innovative Climb Program of Natural Science Foundation of Jiangsu Province,No.BK2008010the Natural Science Foundation of Nantong University,No.11Z001
文摘Voxel-based morphometry can be used to quantitatively compare structural differences and func-tional changes of gray matter in subjects. In the present study, we compared gray matter images of 32 patients with Parkinson’s disease and 25 healthy controls using voxel-based morphometry based on 3.0 T high-field magnetic resonance T1-weighted imaging and clinical neurological scale scores. Results showed that the scores in Mini-Mental State Examination and Montreal Cognitive Assessment were lower in patients compared with controls. In particular, the scores of visuospatial/executive function items in Montreal Cognitive Assessment were significantly reduced, but mean scores of non-motor symptoms significantly increased, in patients with Parkinson’s dis-ease. In addition, gray matter volume was significantly diminished in Parkinson’s disease patients compared with normal controls, including bilateral temporal lobe, bilateral occipital lobe, bilateral parietal lobe, bilateral frontal lobe, bilateral insular lobe, bilateral parahippocampal gyrus, bilateral amygdale, right uncus, and right posterior lobe of the cerebel um. These findings indicate that voxel-based morphometry can accurately and quantitatively assess the loss of gray matter volume in patients with Parkinson's disease, and provide essential neuroimaging evidence for multisystem pathological mechanisms involved in Parkinson’s disease.