The fabrication of magnetorheological (MR) elastomers was studied by two vulcanization methods, including heat vulcanization (HV) and radiation vulcanization (RV), were employed to fabricate MRE samples. The dyn...The fabrication of magnetorheological (MR) elastomers was studied by two vulcanization methods, including heat vulcanization (HV) and radiation vulcanization (RV), were employed to fabricate MRE samples. The dynamical mechanical properties were characterized by using a dynamic mechanic analyzer. In particular, both the MR effect and its durability were investigated. The experimental results showed that RV samples have large magnetoinduced modulus, large zero-field modulus, and good durability property of MR effect. To explain these results, cubic deformation and plasticizer migration were analyzed. Large magneto-induced modulus of RV sample results from cubic deformation during vulcanization process. And the plasticizer migration results in better durability of MR effect.展开更多
Kinetics of natural rubber (NR) vulcanization by lanthanum O, O'-diisopropyldithiophosphate [ La(DiPDP)3 ] was studied. La(DiPDP)3 had remarkable accelerating effect on the vulcanization of NR. The rate constan...Kinetics of natural rubber (NR) vulcanization by lanthanum O, O'-diisopropyldithiophosphate [ La(DiPDP)3 ] was studied. La(DiPDP)3 had remarkable accelerating effect on the vulcanization of NR. The rate constant k6 of the reaction that turned polysulphidic cross-links into the modified main chain was higher than that of desulfuration reaction of polysulfidic cross-links (k3 ). The activation energies (Ea2, Ea3, and Ea6) of the formation, desulfuration, and decomposition of polysulfidic cross-links were 87.57,102.34, and 95.01 kJ · mol^-1, respectively. Activation energy (Eas) of the reaction that turned the cross-link precursors into the modified main chain was 82.67 kJ · mol^-1. It could be concluded that the proportion of polysulphidic cross-links was higher than mono- and di- sulphidic cross-links during induction and curing periods, mono- and di- sulphidic cross-links increased as curing temperature rose. In the temperature range of 140 - 160 ℃, the amounts of polysulphidic cross-links were similar. However, over 160℃, mono- and di- sulphidic cross-links increased rapidly. Moreover, cross-link density of the vulcanizates was determined from the equilibrium-swelling data. A chemical probe detected the concentration of polysulphidic cross-links of vulcanizates. The change trend of the results predicated from equation corresponded to that of the experimental results.展开更多
Eight complexes of rare earth with 2 mercaptobenthiazole, RELCl 2·RE(OH) 3· x H 2O (L=2 mercaptobenthiazole, RE= La~Gd, Y, except for Pm, x =0, 2~4), were synthesized in unhydrous ethanol and char...Eight complexes of rare earth with 2 mercaptobenthiazole, RELCl 2·RE(OH) 3· x H 2O (L=2 mercaptobenthiazole, RE= La~Gd, Y, except for Pm, x =0, 2~4), were synthesized in unhydrous ethanol and characterized by elemental analyses, IR spectra and thermal analyses. The results show that the ligand is coordinated to the RE ion through both the exocyclic sulfur and the thiazole nitrogen. The vulcanizing properties of the La complex as accelerator were studied in the traditional tire rubber, which indicate that the cross linked rubber accelerated by the rare earth complex has good physical and dynamic mechanical properties by comparison.展开更多
Positron annihilation spectroscopy (PAS) was utilized to investigate the relationship between the free-volume hole properties and miscibility of dynamically vulcanized EPDM/PP blend. The results showed that the noncry...Positron annihilation spectroscopy (PAS) was utilized to investigate the relationship between the free-volume hole properties and miscibility of dynamically vulcanized EPDM/PP blend. The results showed that the noncrystalline region of PP and EPDM in the blend was partially miscible and the miscibility of the blend became worse when the weight percent of EPDM was <50%. This was also demonstrated by DMTA and mechanical properties of the blends with various compositions.展开更多
The physicochemical properties and creepage discharge characteristics of aged high temperature Vulca nized(HTV)silicone rubber materials were investigated by ultraviolet radiati on(UV)aging method in this study.The ex...The physicochemical properties and creepage discharge characteristics of aged high temperature Vulca nized(HTV)silicone rubber materials were investigated by ultraviolet radiati on(UV)aging method in this study.The experimental results show that as the aging time increases,the creepage discharge flashover voltage increases first and then decreases.But the aging time has little effect on the creepage discharge inception voltage.With the aging time prolonged,the discharge endurance time of HTV silicone rubber is shortened,and the creepage discharge development velocity is accelerated.In the short time of applying voltage to aging material,the magnitude of discharge in creases rapidly.According to the partial discharge characteristic parameters of creepage discharge,the whole creepage discharge process is partitioned into four stages.Compared with unaged HTV silicone rubber,the aged HTV silicone rubber has less fluctuation in performance parameters and a clear trend.The study found that UV aging not only affects the physicochemical and hydrophobic properties of the HTV silicone rubber,but also accelerates the development of creepage discharge under AC voltage.展开更多
Styrene-butadiene rubber(SBR)is widely used in tires in the automotive segment and vulcanization using sulfur is a common process to enhance its mechanical properties.However,the addition of sulfur as the cross-linkin...Styrene-butadiene rubber(SBR)is widely used in tires in the automotive segment and vulcanization using sulfur is a common process to enhance its mechanical properties.However,the addition of sulfur as the cross-linking agent usually results in impurities in pyrolysis products during rubber recycling,and thus the desulfurization during tire pyrolysis attracts much attention.In this work,the pyrolysis of vulcanized SBR is studied in detail with the help of Reax FF molecular dynamics simulation.A series of crosslinked SBR models were built with different sulfur contents and densities.The following Reax FF MD simulations were performed to show products distributions at different pyrolysis conditions.The simulation results show that sulfur products distribution is mainly controlled by sulfur contents and temperatures.The reaction mechanism is proposed based on the analysis of sulfur products conversion pathway,where most sulfur atoms are bonded with hydrocarbon radicals and the rest transfer to H_(2)S.High sulfur contents tend to the formation of elemental sulfur intermediate,and temperature increase facilitates the release of H_(2)S.展开更多
Allyl terminated polyether was used to improve the hydrophilicity of addition-cured room temperature vulcanization silicone rubber. With the increasing of the polyether, both the hydrophilicity and water absorbed of t...Allyl terminated polyether was used to improve the hydrophilicity of addition-cured room temperature vulcanization silicone rubber. With the increasing of the polyether, both the hydrophilicity and water absorbed of the vulcanizates were increased. The mechanical properties were also improved by adding the polyether. The result showed that 1.5wt% of the polyether provided the silicone rubber with proper hydrophilicity.展开更多
This research was aimed at finding out the efficiency of the portable electronic vulcanizer. The old vulcanizing equipment was upgraded to save time, investment, manpower and to eliminate the problem of gas emission i...This research was aimed at finding out the efficiency of the portable electronic vulcanizer. The old vulcanizing equipment was upgraded to save time, investment, manpower and to eliminate the problem of gas emission in vulcanization. The study also determined the accurate temperature setting and duration of vulcanizing process using electronic vulcanizer which eliminated the problem of gas emission produced by the conventional (gas fired) vulcanizer of about 2.772 kg of carbon dioxide for 1 liter of diesel fuel and/or 2.331 kg of carbon dioxide for 1 liter of petrol into the atmosphere. In constructing this vulcanizer, a letter G body configuration made of GI pipe with 31.5 cm long lag bolt with some electronic parts were installed, like the analog temperature gauge, digital timer, relay, LED, buzzer, switch, and heating element. Specifically, the product is divided into three components: base or body, control panel board and the heating unit. The effectiveness level of the equipment was tested utilizing five different temperatures at a constant and variable time. For Class A gum, the best temperature which bonded the gum exactly to the rubber tire was 60℃ in 1 minute while Class B gum was bonded at 60℃ in 2 minutes. The rate of energy consumed by the electronic vulcanizer for Class A gum was Php 0.0757 with an efficiency of 85.22% and for Class B gum was Php 0.15 with an efficiency of 85.22% and for conventional vulcanizer for Class A gum was Php 1.08 with an efficiency of 43.38% and for Class B gum was Php 1.52, with an efficiency of 78.08%. The study revealed that more tires could be vulcanized in a short period of time, therefore providing greater income over time. It is also environment-friendly since it does not emit carbon dioxide as compared to the conventional vulcanizing.展开更多
Self-vulcanizing blends of phenol hydroxy silicone rubber (PHSR) and fluoroelastomer (FPM) were prepared. Vulcanized rubbers with lower glass transition temperature (T(g)) were successfully obtained. The results of dy...Self-vulcanizing blends of phenol hydroxy silicone rubber (PHSR) and fluoroelastomer (FPM) were prepared. Vulcanized rubbers with lower glass transition temperature (T(g)) were successfully obtained. The results of dynamic mechanical analysis (DMA) show that the vulcanized FPM/PHSR (10 phr) blend has only one T(g) temperature, demonstrating the well compatibility between FPM and PHSR. The thermogravimetric analysis (TGA) demonstrates that the PHSR do little damage to the thermal stability of FPM. The vulcanization characteristics of the FPM/PHSR blends were analyzed by using oscillating disc rheometer (ODR). The results show that FPM/PHSR blends have smaller S(min) values and longer scorch time than that of FPM with the same level of bisphenol AF curing agent. It means that FPM/PHSR blends have better processability and curing security. Better mechanical properties can be gained for FPM/PHSR blends at appropriate level of PHSR.展开更多
基金The work was supported by the National Natural Science Foundation of China (No.10672154).
文摘The fabrication of magnetorheological (MR) elastomers was studied by two vulcanization methods, including heat vulcanization (HV) and radiation vulcanization (RV), were employed to fabricate MRE samples. The dynamical mechanical properties were characterized by using a dynamic mechanic analyzer. In particular, both the MR effect and its durability were investigated. The experimental results showed that RV samples have large magnetoinduced modulus, large zero-field modulus, and good durability property of MR effect. To explain these results, cubic deformation and plasticizer migration were analyzed. Large magneto-induced modulus of RV sample results from cubic deformation during vulcanization process. And the plasticizer migration results in better durability of MR effect.
基金Project supported by the Guangdong Natural Science Foundation (05006563)
文摘Kinetics of natural rubber (NR) vulcanization by lanthanum O, O'-diisopropyldithiophosphate [ La(DiPDP)3 ] was studied. La(DiPDP)3 had remarkable accelerating effect on the vulcanization of NR. The rate constant k6 of the reaction that turned polysulphidic cross-links into the modified main chain was higher than that of desulfuration reaction of polysulfidic cross-links (k3 ). The activation energies (Ea2, Ea3, and Ea6) of the formation, desulfuration, and decomposition of polysulfidic cross-links were 87.57,102.34, and 95.01 kJ · mol^-1, respectively. Activation energy (Eas) of the reaction that turned the cross-link precursors into the modified main chain was 82.67 kJ · mol^-1. It could be concluded that the proportion of polysulphidic cross-links was higher than mono- and di- sulphidic cross-links during induction and curing periods, mono- and di- sulphidic cross-links increased as curing temperature rose. In the temperature range of 140 - 160 ℃, the amounts of polysulphidic cross-links were similar. However, over 160℃, mono- and di- sulphidic cross-links increased rapidly. Moreover, cross-link density of the vulcanizates was determined from the equilibrium-swelling data. A chemical probe detected the concentration of polysulphidic cross-links of vulcanizates. The change trend of the results predicated from equation corresponded to that of the experimental results.
文摘Eight complexes of rare earth with 2 mercaptobenthiazole, RELCl 2·RE(OH) 3· x H 2O (L=2 mercaptobenthiazole, RE= La~Gd, Y, except for Pm, x =0, 2~4), were synthesized in unhydrous ethanol and characterized by elemental analyses, IR spectra and thermal analyses. The results show that the ligand is coordinated to the RE ion through both the exocyclic sulfur and the thiazole nitrogen. The vulcanizing properties of the La complex as accelerator were studied in the traditional tire rubber, which indicate that the cross linked rubber accelerated by the rare earth complex has good physical and dynamic mechanical properties by comparison.
基金This work was financially supported by 863 Programme of China No.863-715-012-0160
文摘Positron annihilation spectroscopy (PAS) was utilized to investigate the relationship between the free-volume hole properties and miscibility of dynamically vulcanized EPDM/PP blend. The results showed that the noncrystalline region of PP and EPDM in the blend was partially miscible and the miscibility of the blend became worse when the weight percent of EPDM was <50%. This was also demonstrated by DMTA and mechanical properties of the blends with various compositions.
基金supported by the program for Major Project of the Natural Science Foundation of Qinghai Province(No.2016-ZJ-925Q)Chinese National Programs for Fundamental Research(No.2011CB209400)and(VSN 201602),(2017-K-23)
文摘The physicochemical properties and creepage discharge characteristics of aged high temperature Vulca nized(HTV)silicone rubber materials were investigated by ultraviolet radiati on(UV)aging method in this study.The experimental results show that as the aging time increases,the creepage discharge flashover voltage increases first and then decreases.But the aging time has little effect on the creepage discharge inception voltage.With the aging time prolonged,the discharge endurance time of HTV silicone rubber is shortened,and the creepage discharge development velocity is accelerated.In the short time of applying voltage to aging material,the magnitude of discharge in creases rapidly.According to the partial discharge characteristic parameters of creepage discharge,the whole creepage discharge process is partitioned into four stages.Compared with unaged HTV silicone rubber,the aged HTV silicone rubber has less fluctuation in performance parameters and a clear trend.The study found that UV aging not only affects the physicochemical and hydrophobic properties of the HTV silicone rubber,but also accelerates the development of creepage discharge under AC voltage.
基金The authors would like to express appreciation for the support of National Key Research and Development Program of China(Grant No.2018YFC1902601).
文摘Styrene-butadiene rubber(SBR)is widely used in tires in the automotive segment and vulcanization using sulfur is a common process to enhance its mechanical properties.However,the addition of sulfur as the cross-linking agent usually results in impurities in pyrolysis products during rubber recycling,and thus the desulfurization during tire pyrolysis attracts much attention.In this work,the pyrolysis of vulcanized SBR is studied in detail with the help of Reax FF molecular dynamics simulation.A series of crosslinked SBR models were built with different sulfur contents and densities.The following Reax FF MD simulations were performed to show products distributions at different pyrolysis conditions.The simulation results show that sulfur products distribution is mainly controlled by sulfur contents and temperatures.The reaction mechanism is proposed based on the analysis of sulfur products conversion pathway,where most sulfur atoms are bonded with hydrocarbon radicals and the rest transfer to H_(2)S.High sulfur contents tend to the formation of elemental sulfur intermediate,and temperature increase facilitates the release of H_(2)S.
文摘Allyl terminated polyether was used to improve the hydrophilicity of addition-cured room temperature vulcanization silicone rubber. With the increasing of the polyether, both the hydrophilicity and water absorbed of the vulcanizates were increased. The mechanical properties were also improved by adding the polyether. The result showed that 1.5wt% of the polyether provided the silicone rubber with proper hydrophilicity.
文摘This research was aimed at finding out the efficiency of the portable electronic vulcanizer. The old vulcanizing equipment was upgraded to save time, investment, manpower and to eliminate the problem of gas emission in vulcanization. The study also determined the accurate temperature setting and duration of vulcanizing process using electronic vulcanizer which eliminated the problem of gas emission produced by the conventional (gas fired) vulcanizer of about 2.772 kg of carbon dioxide for 1 liter of diesel fuel and/or 2.331 kg of carbon dioxide for 1 liter of petrol into the atmosphere. In constructing this vulcanizer, a letter G body configuration made of GI pipe with 31.5 cm long lag bolt with some electronic parts were installed, like the analog temperature gauge, digital timer, relay, LED, buzzer, switch, and heating element. Specifically, the product is divided into three components: base or body, control panel board and the heating unit. The effectiveness level of the equipment was tested utilizing five different temperatures at a constant and variable time. For Class A gum, the best temperature which bonded the gum exactly to the rubber tire was 60℃ in 1 minute while Class B gum was bonded at 60℃ in 2 minutes. The rate of energy consumed by the electronic vulcanizer for Class A gum was Php 0.0757 with an efficiency of 85.22% and for Class B gum was Php 0.15 with an efficiency of 85.22% and for conventional vulcanizer for Class A gum was Php 1.08 with an efficiency of 43.38% and for Class B gum was Php 1.52, with an efficiency of 78.08%. The study revealed that more tires could be vulcanized in a short period of time, therefore providing greater income over time. It is also environment-friendly since it does not emit carbon dioxide as compared to the conventional vulcanizing.
基金supported by the National Natural Science Foundation of China(No.50873036).
文摘Self-vulcanizing blends of phenol hydroxy silicone rubber (PHSR) and fluoroelastomer (FPM) were prepared. Vulcanized rubbers with lower glass transition temperature (T(g)) were successfully obtained. The results of dynamic mechanical analysis (DMA) show that the vulcanized FPM/PHSR (10 phr) blend has only one T(g) temperature, demonstrating the well compatibility between FPM and PHSR. The thermogravimetric analysis (TGA) demonstrates that the PHSR do little damage to the thermal stability of FPM. The vulcanization characteristics of the FPM/PHSR blends were analyzed by using oscillating disc rheometer (ODR). The results show that FPM/PHSR blends have smaller S(min) values and longer scorch time than that of FPM with the same level of bisphenol AF curing agent. It means that FPM/PHSR blends have better processability and curing security. Better mechanical properties can be gained for FPM/PHSR blends at appropriate level of PHSR.