Many desert expressways are affected by the deposition of the wind-blown sand,which might block the movement of vehicles or cause accidents.W-beam central guardrails,which are used to improve the safety of desert expr...Many desert expressways are affected by the deposition of the wind-blown sand,which might block the movement of vehicles or cause accidents.W-beam central guardrails,which are used to improve the safety of desert expressways,are thought to influence the deposition of the wind-blown sand,but this has yet not to be studied adequately.To address this issue,we conducted a wind tunnel test to simulate and explore how the W-beam central guardrails affect the airflow,the wind-blown sand flux and the deposition of the wind-blown sand on desert expressways in sandy regions.The subgrade model is 3.5 cm high and 80.0 cm wide,with a bank slope ratio of 1:3.The W-beam central guardrails model is 3.7 cm high,which included a 1.4-cm-high W-beam and a 2.3-cm-high stand column.The wind velocity was measured by using pitot-static tubes placed at nine different heights(1,2,3,5,7,10,15,30 and 50 cm)above the floor of the chamber.The vertical distribution of the wind-blown sand flux in the wind tunnel was measured by using the sand sampler,which was sectioned into 20 intervals.In addition,we measured the wind-blown sand flux in the field at K50 of the Bachu-Shache desert expressway in the Taklimakan Desert on 11 May 2016,by using a customized 78-cm-high gradient sand sampler for the sand flux structure test.Obstruction by the subgrade leads to the formation of two weak wind zones located at the foot of the windward slope and at the leeward slope of the subgrade,and the wind velocity on the leeward side weakens significantly.The W-beam central guardrails decrease the leeward wind velocity,whereas the velocity increases through the bottom gaps and over the top of the W-beam central guardrails.The vertical distribution of the wind-blown sand flux measured by wind tunnel follows neither a power-law nor an exponential function when affected by either the subgrade or the W-beam central guardrails.At 0.0H and 0.5H(where H=3.5 cm,which is the height of the subgrade),the sand transport is less at the 3 cm height from the subgrade surface than at the 1 and 5 cm heights as a result of obstruction by the W-beam central guardrails,and the maximum sand transportation occurs at the 5 cm height affected by the subgrade surface.The average saltation height in the presence of the W-beam central guardrails is greater than the subgrade height.The field test shows that the sand deposits on the overtaking lane leeward of the W-beam central guardrails and that the thickness of the deposited sand is determined by the difference in the sand mass transported between the inlet and outlet points,which is consistent with the position of the minimum wind velocity in the wind tunnel test.The results of this study could help us to understand the hazards of the wind-blown sand onto subgrade with the W-beam central guardrails.展开更多
Cu-W thin film with high W content was deposited by dual-target DC-magnetron co-sputtering technology.Effects of the substrates surface treating technique on the adhesive strength of Cu-W thin films were studied.It is...Cu-W thin film with high W content was deposited by dual-target DC-magnetron co-sputtering technology.Effects of the substrates surface treating technique on the adhesive strength of Cu-W thin films were studied.It is found that the technique of ion beam assisting bombardment implanting of W particles can remarkably improve the adhesive property of Cu-W thin films. Indentation and scratching test show that,the critical load is doubled over than the sample only sputter-cleaned by ion beam.The enhancing mechanism of ion beam assisting bombardment implanting of Cu-W thin films was analyzed.With the help of mid-energy Ar+ion beam,W atoms can diffuse into the Fe-substrate surface layer;Fe atoms in the substrate surface layer and W atoms interlace with one another;and microcosmic mechanical meshing and diffusing combination on atom-scale among the Fe and W atoms through the film/substrate interface can be formed.The wettability and thermal expansion properties of the W atoms diffusion zone containing plentiful W atoms are close to those of pure W or W-based Cu-W film.展开更多
对W波段带状注五间隙耦合腔的高频结构进行了设计与分析,以一个五间隙耦合腔作为输入腔,一个五间隙耦合腔作为输出腔,构成了W波段SBEIK的注波互作用系统,利用CST粒子工作室对整个注波互作用系统进行了三维计算模拟,并用Magic 3D对注波...对W波段带状注五间隙耦合腔的高频结构进行了设计与分析,以一个五间隙耦合腔作为输入腔,一个五间隙耦合腔作为输出腔,构成了W波段SBEIK的注波互作用系统,利用CST粒子工作室对整个注波互作用系统进行了三维计算模拟,并用Magic 3D对注波互作用计算进行了验证,结果表明两种PIC软件的计算结果基本一致.该SBEIK在电子注电压为75 k V、电流为4 A条件下,仅用两个腔体在W波段实现了高于24 d B的增益,为下一步高增益、高效率、小型化、紧凑型SBEIK的设计奠定了坚实的基础.展开更多
采用粉床型电子束增材制造技术(Selective electron beam melting,SEBM)制备了W-3.5Nb合金,分析了在电子束低速扫描、高速扫描、两次熔化三种熔化条件下W-3.5Nb合金的成形缺陷和显微组织。研究结果表明:W-3.5Nb合金的成形缺陷主要包括...采用粉床型电子束增材制造技术(Selective electron beam melting,SEBM)制备了W-3.5Nb合金,分析了在电子束低速扫描、高速扫描、两次熔化三种熔化条件下W-3.5Nb合金的成形缺陷和显微组织。研究结果表明:W-3.5Nb合金的成形缺陷主要包括熔合不良和微裂纹,低速扫描可有效降低缺陷含量。熔合不良主要由熔池的球化和扰动导致,微裂纹主要是由凝固过程中枝晶间液相的凝固收缩引起。不同扫描速度下,熔池的凝固过程不同,合金呈现出不同的组织特点。在高速扫描时,由于扫描层间熔合不充分,合金外延生长不明显,形成细小等轴晶,没有明显的择优取向;低速扫描时,在外延生长的作用下,形成粗大的柱状晶组织,沿成形方向形成(001)方向择优取向;在单层两次熔化条件下,柱状晶特性和晶粒的择优取向减弱。展开更多
基金funded by the Strategic Priority Research Program of the Chinese Academy of Sciences"Environmental Changes and Green Silk Road Construction in Pan-Third Pole Region"(XDA2003020201)the National Key Research and Development Program of China(2017YFE0109200)the National Natural Science Foundation of China(41571011)
文摘Many desert expressways are affected by the deposition of the wind-blown sand,which might block the movement of vehicles or cause accidents.W-beam central guardrails,which are used to improve the safety of desert expressways,are thought to influence the deposition of the wind-blown sand,but this has yet not to be studied adequately.To address this issue,we conducted a wind tunnel test to simulate and explore how the W-beam central guardrails affect the airflow,the wind-blown sand flux and the deposition of the wind-blown sand on desert expressways in sandy regions.The subgrade model is 3.5 cm high and 80.0 cm wide,with a bank slope ratio of 1:3.The W-beam central guardrails model is 3.7 cm high,which included a 1.4-cm-high W-beam and a 2.3-cm-high stand column.The wind velocity was measured by using pitot-static tubes placed at nine different heights(1,2,3,5,7,10,15,30 and 50 cm)above the floor of the chamber.The vertical distribution of the wind-blown sand flux in the wind tunnel was measured by using the sand sampler,which was sectioned into 20 intervals.In addition,we measured the wind-blown sand flux in the field at K50 of the Bachu-Shache desert expressway in the Taklimakan Desert on 11 May 2016,by using a customized 78-cm-high gradient sand sampler for the sand flux structure test.Obstruction by the subgrade leads to the formation of two weak wind zones located at the foot of the windward slope and at the leeward slope of the subgrade,and the wind velocity on the leeward side weakens significantly.The W-beam central guardrails decrease the leeward wind velocity,whereas the velocity increases through the bottom gaps and over the top of the W-beam central guardrails.The vertical distribution of the wind-blown sand flux measured by wind tunnel follows neither a power-law nor an exponential function when affected by either the subgrade or the W-beam central guardrails.At 0.0H and 0.5H(where H=3.5 cm,which is the height of the subgrade),the sand transport is less at the 3 cm height from the subgrade surface than at the 1 and 5 cm heights as a result of obstruction by the W-beam central guardrails,and the maximum sand transportation occurs at the 5 cm height affected by the subgrade surface.The average saltation height in the presence of the W-beam central guardrails is greater than the subgrade height.The field test shows that the sand deposits on the overtaking lane leeward of the W-beam central guardrails and that the thickness of the deposited sand is determined by the difference in the sand mass transported between the inlet and outlet points,which is consistent with the position of the minimum wind velocity in the wind tunnel test.The results of this study could help us to understand the hazards of the wind-blown sand onto subgrade with the W-beam central guardrails.
基金Project(05JJ3005)supported by the Natural Science Foundation of Hunan Province,China
文摘Cu-W thin film with high W content was deposited by dual-target DC-magnetron co-sputtering technology.Effects of the substrates surface treating technique on the adhesive strength of Cu-W thin films were studied.It is found that the technique of ion beam assisting bombardment implanting of W particles can remarkably improve the adhesive property of Cu-W thin films. Indentation and scratching test show that,the critical load is doubled over than the sample only sputter-cleaned by ion beam.The enhancing mechanism of ion beam assisting bombardment implanting of Cu-W thin films was analyzed.With the help of mid-energy Ar+ion beam,W atoms can diffuse into the Fe-substrate surface layer;Fe atoms in the substrate surface layer and W atoms interlace with one another;and microcosmic mechanical meshing and diffusing combination on atom-scale among the Fe and W atoms through the film/substrate interface can be formed.The wettability and thermal expansion properties of the W atoms diffusion zone containing plentiful W atoms are close to those of pure W or W-based Cu-W film.
文摘对W波段带状注五间隙耦合腔的高频结构进行了设计与分析,以一个五间隙耦合腔作为输入腔,一个五间隙耦合腔作为输出腔,构成了W波段SBEIK的注波互作用系统,利用CST粒子工作室对整个注波互作用系统进行了三维计算模拟,并用Magic 3D对注波互作用计算进行了验证,结果表明两种PIC软件的计算结果基本一致.该SBEIK在电子注电压为75 k V、电流为4 A条件下,仅用两个腔体在W波段实现了高于24 d B的增益,为下一步高增益、高效率、小型化、紧凑型SBEIK的设计奠定了坚实的基础.
文摘采用粉床型电子束增材制造技术(Selective electron beam melting,SEBM)制备了W-3.5Nb合金,分析了在电子束低速扫描、高速扫描、两次熔化三种熔化条件下W-3.5Nb合金的成形缺陷和显微组织。研究结果表明:W-3.5Nb合金的成形缺陷主要包括熔合不良和微裂纹,低速扫描可有效降低缺陷含量。熔合不良主要由熔池的球化和扰动导致,微裂纹主要是由凝固过程中枝晶间液相的凝固收缩引起。不同扫描速度下,熔池的凝固过程不同,合金呈现出不同的组织特点。在高速扫描时,由于扫描层间熔合不充分,合金外延生长不明显,形成细小等轴晶,没有明显的择优取向;低速扫描时,在外延生长的作用下,形成粗大的柱状晶组织,沿成形方向形成(001)方向择优取向;在单层两次熔化条件下,柱状晶特性和晶粒的择优取向减弱。